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4.5 An overview of pipelining

O Calculate cycle time assuming negligible delays except:
= memory (200ps), ALU and adders (200ps), register file access (100ps)
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Single Cycle Processor - performance of Id
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Performance of Single Cycle Processor

O Assume time for stages is
= 100ps for register read or write
= 200ps for other stages

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

d 200ps | 100ps  |200ps | 200ps | 100 ps -

sd 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps
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Performance Issues

O Longest delay determines clock period
m Critical path: load instruction

m Instruction memory — register file > ALU —
data memory — register file

O Not feasible to vary period for different
instructions

O Violates design principle
= Making the common case fast

O We will improve performance by pipelining
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Pipelining Analogy

O Pipelined laundry: overlapping execution

m Parallelism improves performance
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RISC-V Pipeline

O Five stages, one step per stage

1.

[F: Instruction fetch from memory

. ID: Instruction decode & register read

2
3. EX: Execute operation or calculate address
4,
5

MEM: Access memory operand

. WB: Write result back to register
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Pipelining RISC-V instruction set

O Since there are five separate stages, we can have a pipeline
in which one instruction is in each stage.

O CPI is decreased to 1, since one instruction will be issued
(or finished) each cycle.

O During any cycle, one instruction is present in each stage.
Clock Number

1 2 B 4 5 6 7 8 9
Instruction i IF! ID ' EX 'MEM WB ' : : :
Instruction i+1 IF 1 ID ' EX 'MEM! WB | : '
Instruction i+2 ; ' IF 'ID 'EX MEM 'WB '
Instruction i+3 ; ; Ik ID L EX. MEM. WB!
Instruction i+4 1 | ! "IF O NID O 'EX 'MEM! WB

O Ideally, performance is increased five fold |
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Pipeline Performance

O Assume time for stages is

= 100ps for register read or write
= 200ps for other stages

O Compare pipelined datapath with single-cycle

datapath
Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
|d 200ps 100 ps 200ps 200ps 100 ps
sd 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps
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Pipeline Performance

Program

execution Time 200 400 600 800 1000 1200 1400 1600 1800
order T T T - T T T T .
(in instructions)
Id x1, 100(x4) '"sft;ff:on Reg| ALU aE:etass Reg
Id x2, 200(x4) 800 ps 'nsft;:;:ion Reg| ALU a[::etzs Reg
Instruction
Id x3, 400(x4) 800 ps fetch

Program
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Time T . . T T T .
order
(in instructions)
Id x1, 100(x4) insiruction Reg| ALU | D@ IReg
Id x2, 200(x4) 200 ps | "o |Rea| A | D2 IReg
Instruction Data
Id x3, 400(x4) 200 psS | fetch Reg| ALU access |9
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Pipeline Speedup

O If all stages are balanced
® 1.¢., all take the same time

m Time between Instructions j;,ejined
= Time between mstructions,,,,inelined
/Number of stages

OIf not balanced, speedup is less

O Speedup due to increased throughput

m Latency (time for each instruction) does not
decrease
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Pipelining and ISA Design

ORISC-V ISA designed for pipelining

= All instructions are 32-bits
OEasier to fetch and decode 1n one cycle
Oc.f. x86: 1- to 17-byte instructions

= Few and regular instruction formats
0Can decode and read registers 1n one step

m Load/store addressing

oCan calculate address in 3™ stage, access
memory in 4t stage
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Hazards

O Situations that prevent starting the next
instruction in the next cycle

O Structure hazards
= A required resource 1s busy

O Data hazard

= Need to wait for previous instruction to complete
1ts data read/write
O Control hazard

m Deciding on control action depends on previous
instruction
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Structure Hazards

0 Conflict for use of a resource

OIn RISC-V pipeline with a single memory
= Load/store requires data access

= Instruction fetch would have to stall for that cycle
0 Would cause a pipeline “bubble™

O Hence, pipelined datapaths require separate
instruction/data memories
= Or separate instruction/data caches
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Data Hazards

O An instruction depends on completion of
data access by a previous instruction

madd x19, x0, x1
sub x2, x19, x3

. 200 400 600 800 1000 1200 1400 1600
Time >

I I I | I I I

|
bubble bubble) ( bubble bubble) ( bubble
O © © @ ©
bubble bubble bubble bubble bubble
O 9. @ O O
IF !

- D B MEM
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Forwarding (aka Bypassing)

O Use result when it is computed
= Don’t wait for it to be stored 1n a register
m Requires extra connections in the datapath

Program

execution . 200 400 600 800 1000
order Time T T T T

(in instructions)

add x1, x2, x3 IF

MEM WB |

sub x4, x1, X5
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Load-Use Data Hazard

O Can’t always avoid stalls by forwarding
= If value not computed when needed
m Can’t forward backward 1n time!

Program

execution , 200 400 600 800 1000 1200 1400
order Time T T T T

(in instructions) I
Id x1, 0(x2) IF —d ID
bubble) (bubble
O O O

WB |
bubble bubble
O O

WB |

le
sub x4, x1, x5 —E ID
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Code Scheduling to Avoid Stalls

0 Reorder code to avoid use of load result in
the next instruction

OCcodefora = b + e; c=b + f;

1d x1, 0(x0) 1d
CORCERE IO N,

— add x3, x1, 1d
I (<2

x3, 24(x0) add

1d 16 (x0 sd 0
gy - add x5, x13(x4) add X5, xl,
sd

x5, 32(x0) sd x5, 32(x0)
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Control Hazards

OBranch determines flow of control
m Fetching next instruction depends on branch

outcome

= Pipeline can’t always fetch correct

Instruction
oStill working on

stage of branch

OIn RISC-V pipeline

= Need to compare registers and compute
target early 1n the pipeline

® Add hardware to do 1t 1n ID stage
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Stall on Branch

O Wait until branch outcome determined
before fetching next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400 N
order Ime | T | | T T | >
(in instructions)

add x4, x5, x6 '"Sft;‘t‘g:m Reg| ALU asfézs Reg

Instruction Data
beq x1, x0, 40 m totch Reg| ALU access | Re9
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A A Q
or X7, x8, x9 - »|Instruction Data
\ 400 ps fetch Reg| ALU access |9
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Branch Prediction

O Longer pipelines can’t readily determine
branch outcome early

= Stall penalty becomes unacceptable

O Predict outcome of branch
= Only stall 1f prediction 1s wrong

OIn RISC-V pipeline

= Can predict branches not taken

= Fetch instruction after branch, with no delay
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More-Realistic Branch Prediction

O Static branch prediction
= Based on typical branch behavior
= Example: loop and 1f-statement branches

00 Predict backward branches taken

00 Predict forward branches not taken

O Dynamic branch prediction

m Hardware measures actual branch behavior

Oe.g., record recent history of each branch

m Assume future behavior will continue the trend
0 When wrong, stall while re-fetching, and update history
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Pipeline Summary
The BIG Picture

O Pipelining improves performance by
increasing instruction throughput

= Executes multiple instructions in parallel
= Each instruction has the same latency

OSubject to hazards

= Structure, data, control

O Instruction set design affects complexity of
pipeline implementation
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4.6 RISC-V Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access
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Pipeline registers

O Need registers between stages

® To hold information produced in previous cycle

;
=
=
E

Read
Address data [ 1
M
Data u
memory OX
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Pipeline Operation

O Cycle-by-cycle flow of instructions through
the pipelined datapath
® “Single-clock-cycle” pipeline diagram
OShows pipeline usage 1n a single cycle
OHighlight resources used
m c.f. “multi-clock-cycle” diagram
OGraph of operation over time

O We’ll look at “single-clock-cycle” diagrams
for load & store
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IF for Load, Store, ...
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ID for Load, Store, ...

Id

Instruction decode

B

Address

Instruction
memory

e f

ZHEJIANG UNIVERSITY

Y

Instruction

Shift
left 1

Add Sum|

EX/MEM

Read
register 1 Read
data 1

Read
register 2

Registers Read
Write data 2
register
Write
data

-
—@—»-| Address

Data
memory

Write

data

Read
data

MEM/WB

RREHESMER SRR




EX for Load

Execution

e f
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MEM for Load
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WB for Load

Id
Write-back
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Corrected Datapath for Load
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M c
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EX for St

ore

e f

ZHEJIANG UNIVERSITY

Read
data

MEM/WB

| N |
| Execution |
IF/ID ID/EX EX/MEM
Add > >
4 — AddSum
Shift
left 1
>
PC Address c Read Read
2 7 |register 1 ea > >
L g data 1
= Read Zero > >
Instruction _ 5 register 2 ALU aALu
memory - —9 | wite Registers __ > > %n result [ > Address
register data 2 T Data
Write « X memory
data 1
_ _ | Write
> "~ | data
32 Imm | 64
AV —
v\ Gen

Ox c =z

RRGHESRERLWHFTFR




MEM for Store

e f
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WB for Store

e f
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Multi-Cycle Pipeline Diagram

O Form showing resource usage

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CC9

Program
execution
order

(in instructions) -
|~ -1
Id x10, 40(x1) IM ~|:|—ElReg -[DM— —Ee_g:
bx11, X2, X3 M R DM —E_‘
sub x11, x2, x Reg -[ eg
dd x12, X3, x4 M =R DM —E_}
aad X1, X9, X l_eg | I e_g]
Id x13, 48(x1 M R DM —E_'
— — |
x13, 48(x1) l_eg -[ e_gJ
[~ — —1
add x14, x5, X6 IM [ Reg SALU -ﬂ«rﬂ—@gj
Y — _
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Multi-Cycle Pipeline Diagram

O Traditional form

Program
execution
order

(in instructions)

Id x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
Id x13, 48(x1)

add x14, x5, x6

v) ik f
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Time (in clock cycles)

CC1 CcC2 CcC3 CC4 CC5 CC6 CC7 CC38 CC9
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
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Single-Cycle Pipeline Diagram

O State of pipeline in a given cycle

add x14, x5, x6

Id x13, 48(x1)

add x12, x3, x4

sub x11, x2, x3

Id x10, 40(x1)

e f
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Pipelined C

ontrol (Simplified)
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Pipelined Control

O Control signals derived from instruction

= As in single-cycle implementation

\ WB
Instruction \
— Control M WB
/ EX - M | wB
IF/ID ID/EX EX/MEM MEM/WB
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Pipelined Control
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it g
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4.7 Data Hazards

O Consider this sequence:

sub x2, x1,x3
and x12,x2,x5
or x13,X6,x2
add x14,x2,x2
sd x15,100(x2)

O We can resolve hazards with forwarding

m How do we detect when to forward?
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Dependencies & Forwarding

Time (in clock cycles)

Value of
register x2:

Program
execution
order

(in instructions)

sub x2, x1, x3

and x12, x2, x5

or x13, x6, x2

add x14, x2, x2

4 sd x15, 100(xX2)

3
d 3
o 1 :ZJ D
N 77
S

o
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Detecting the Need to Forward

O Pass register numbers along pipeline
m ¢.g., ID/EX.RegisterRs1 = register number for Rs1 sitting
in ID/EX pipeline register
O ALU operand register numbers in EX stage are
given by
= [D/EX.RegisterRs1, ID/EX.RegisterRs2
O Data hazards when

la. EX/MEM.RegisterRd = ID/EX.RegisterRs|
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1

2b. MEM/WB.RegisterRd = ID/EX.RegisterRs?2 } -
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Detecting the Need to Forward

O But only if forwarding instruction will write
to a register!

= EX/MEM.RegWrite, MEM/WB.RegWrite

O And only if Rd for that instruction is not x(

= EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

RREHESMER SRR



Forwarding Paths

ID/EX EX/MEM MEM/WB

N w
u
—-| >
)
— >

Registers A ForwardA

\/

A
\/

ALU ——>

—] > >
u Data _
I x memory
[ 2 o

L

ForwardB

Y
\

Y
Y

[
>

Rs1

2:2 EX/MEM.RegisterRd
~ Forwarding j MEM/WB_RegisterRd
> unit I
. 2
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Forwarding Conditions

ForwardA = 00
ForwardA = 10

ForwardA =01

ForwardB = 00

ForwardB = 10

ForwardB =01

ID/EX
EX/MEM

MEM/WB

ID/EX

EX/MEM

MEM/WB

The first ALU operand comes from the register file.

The first ALU operand is forwarded from the prior ALU
result.

The first ALU operand is forwarded from data memory or
an earlier ALU result.

The second ALU operand comes from the register file.

The second ALU operand is forwarded from the prior ALU
result.

The second ALU operand is forwarded from data memory
or an earlier ALU result.
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Double Data Hazard

O Consider the sequence:

add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

0 Both hazards occur
m Want to use the most recent

O Revise MEM hazard condition
® Only fwd 1f EX hazard condition 1sn’t true
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Revised Forwarding Condition

O MEM hazard
= if MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01
= if MEM/WB.RegWrite
and (MEM/WB.RegisterRd # 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01
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Datapath with Forwarding

ID/EX
e EX/MEM
> M ~|WB MEM/WB
IF/ID EX — M >|WB—
> U >
‘ ¥
5 * > Be
6 -
E Registers t ALUL—> L .- =
[2] >
Instruction | i > - :
memory " N - ':: - Data
Tl x " memory
[ o
IF/ID.RegisterRs1 Rs1 . o
IF/ID.RegisterRsZ: |Rs2
IF/ID.RegisterRd Rd X EX/MEM.RegisterRd
~ Forwarding = | | MEM/WB.RegisterRd
> unit j <

v) 5 F RRENSMER LR
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Load-Use Hazard Detection

O Check when using instruction is decoded in
1D stage
O ALU operand register numbers in ID stage
are given by
m [F/ID.RegisterRs1, IF/ID.RegisterRs?2

O Load-use hazard when

» ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs2))

O If detected, stall and insert bubble
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How to Stall the Pipeline

O Force control values in ID/EX register
to 0

= EX, MEM and WB do nop (no-operation)
O Prevent update of PC and 1F/ID register

= Using instruction 1s decoded again
= Following instruction 1s fetched again

m 1-cycle stall allows MEM to read data for 1d
0 Can subsequently forward to EX stage
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Load-Use Data Hazard

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CCH9 CC 10

Program
execution
order

(in instructions) _ _

|y 1
R | R
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/15
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L.
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| R
and x4, x2, x5 M F==ed ] 15 } JIEK AT—gng

e e / e e
& 1 [ =
or X8, X2, X6 M Fe=ed [ > DM} —Eeg
L —— —
| add x9, x4, x2 M H Fred | [ DM (HReg
) J
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Datapath with Hazard Detection

Hazard ID/EX.MemRead
- detection <
) —-\ unit /
% ID/EX
= m . I—'WB EX/MEM
. > @ V| L M > WB I_l\fEM/WB
= X
0 —
% IFVID EX M WB
o
)
> M
> U
S > X
© Registers _/
Y S }ForwardA g M
3 N ALU u
pcL,| Instruction | | | =] > M X
memory N u R Data —
- - memo
ForwardB
IF/ID.RegisterRs1 .
IF/ID.RegisterRs2
IF/ID.RegisterRd Rd - -
Rs1 Forwarding

v) 5 F RSB L L THIER
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Stalls and Performance
The BIG Picture

O Stalls reduce performance

= But are required to get correct results

O Compiler can arrange code to avoid hazards
and stalls

m Requires knowledge of the pipeline structure

) it RALENSMER LR
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4.8 Branch Hazards

O If branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5S CCé6 CC7 CCs8 CC9

Program
execution
order

(in instructions)

(-
40 beq x1, x0, 16 EI.—I—UR
44 and x12, x2, x5 |II.—I—|3I

48 or x13, x6, X2

52 add x14, x2, x2

R DM g

17 J
72 Id x4, 100(x7) /v _I_mi IS E g

Y L I r il

) i f RRGHERERZLWHFPR

WL
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Reducing Branch Delay

O Move hardware to determine outcome to ID stage

m Target address adder

m Register comparator

O Example: branch taken

36:
40:

44 :
48
52:
56:

/2

N
\\\\\\\\\\\\\\\\\\\

sub
beq

and
orr

add
sub

1d

x10,
x1,

x12,
x13,
x14,
x15,

x4 ,

x4, x8
x3, 32

X2,
X2,
x4 ,
X6,

X5
X6
X2
X7

50(x7)

// PC-relative branch
// to 40+32=72

immediate
Branch if equal beq x5, x6, 100 if (x5 == x6) go to PC+100 | PC-relative branch if registers equa
Branch if | bne x5, x6, 100 if (x5 != x6) go to PC+100 PC-relative branch if registers not equal
Conditional Branch if b1t x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less
branch Branch if greater or equal bge x5, x6, 100 if (x5 >= x6) go to PC+100 | PC-relative branch if registers greater or equa
Branch if less, unsigne: bltu x5, x6, 100 if (x5 < x6) go to PC+100 PC-relative branch if registers less
Branch if greatr/eq, bgeu x5, x6, 100 if (x5 >= x6) go to PC+100 | PC-relative branch if registers greater or equa
unsigned
Uncondit- Jump and link jal x1, 100 x1 = PC+4; go to PC+100 PC-relative procedure call
ional bran s

h Jump and link register

jalr x1, 100(x5)

x1 = PC+4; go to x5+100

Procedure return; indirect cal




Example: Branch Taken

and x12, x2, x5 i beq x1, x3, 16 i sub x10, x4, x8 E before<1> E before<2>
I I I 1
l | | |
IF.Flush | : : :
I I I 1
: / Hazard | : \
detection I : : '
unit J ! ! !
IDJEX ! '
M ”"WB EX/MEM |
L »(Control o u M TVE‘ MEM/WB
| , 72 O*L).(J EX M wB
| i
4
b x1 =
Regi !
i 48 M
x3 u
- o x8 Data X
16 < memory
10
B
: Forwarding :
: unit ) ‘ .

Clock 3

¥) M2 hF RRGHERERZLWHFPR
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Example: Branch Taken

Id x4, 50(x7)
IF.Flush

Bubble (nop)

Clock 4

)%

ZHEJIANG UNIVERSITY

@->| Control

Hazard

:‘ detection |
unit /

| beq x1, x3, 16 | sub x10, ... . before<1>
: I :
1 1 1
: : \
| I I
ID/IEX ! !
1 1
b EX/MEM !
M _l 1
u M >|WB MEM/WB
X
E] 0 EX M
Shift’
left 1
Registers @ #
> [ 2
/ r
Imm
: Forwarding T
' unit =
1
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Dynamic Branch Prediction

O In deeper and superscalar pipelines, branch
penalty is more significant

O Use dynamic prediction
= Branch prediction buffer (aka branch history table)
» Indexed by recent branch instruction addresses (lower part)
= Stores outcome (taken/not taken)
= To execute a branch

0 Check table, expect the same outcome

O Start fetching from fall-through or target
o If wrong, flush pipeline and flip prediction

RREHESMER SRR



1-Bit Predictor: Shortcoming

O Inner loop branches mispredicted twice!

outer: .. <

inner: .. «

beq .., .., outer

= Mispredict as taken on last iteration of inner loop

» Then mispredict as not taken on first iteration of
inner loop next time around

RRGHESRERLWHFTFR



2-Bit Predictor

O Only change prediction on two successive
mispredictions

Not taken

Taken

Not takenl ‘ Taken

Not taken
( Predict not taken
Taken g

RRGEHEMER SRR




Calculating the Branch Target

O Even with predictor, still need to calculate
the target address

m |-cycle penalty for a taken branch

O Branch target buffer
m Cache of target addresses
» Indexed by PC when nstruction fetched

0 If hit and instruction 1s branch predicted taken, can fetch
target immediately

RREHESMER SRR




4.9 Exceptions and Interrupts

O “Unexpected” events requiring change
in flow of control

m Different ISAs use the terms differently

O Exception
m Arises within the CPU

Oe.g., undefined opcode, syscall, hardware malfunction ...

O Interrupt
m From an external I/O controller

O Dealing with them without sacrificing

performance is hard
RIS RUER LTI




Handling Exceptions

OSave PC of offending (or interrupted)
instruction

m In RISC-V: Supervisor Exception Program Counter
(SEPC)

O Save indication of the problem

m In RISC-V: Supervisor Exception Cause Register
(SCAUSE)
= 64 bits, but most bits unused

0 Exception code field: 2 for undefined opcode, 12 for
hardware malfunction, ...

OJump to handler

= Assume at 0000 0000 1C09 0000y,
) 2k f RREHESMER SRR
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An Alternate Mechanism

O Vectored Interrupts
= Handler address determined by the cause

O Exception vector address to be added to a
vector table base register:

= Undefined opcode 00 0100 0000,
» Hardware malfunction: 01 1000 0000,
_ I

O Instructions either
= Deal with the interrupt, or
= Jump to real handler

RREHESMER SRR



Handler Actions

O Read cause, and transfer to relevant
handler

O Determine action required

O If restartable
m Take corrective action
= use SEPC to return to program

O Otherwise

= Terminate program
m Report error using SEPC, SCAUSE, ...

RREHESMER SRR




Exceptions in a Pipeline

0 Another form of control hazard

O Consider malfunction on add in EX stage
add x1, x2, x1
= Prevent x1 from being clobbered
= Complete previous instructions
= Flush add and subsequent instructions
= Set SEPC and SCAUSE register values
® Transfer control to handler

O Similar to mispredicted branch
m Use much of the same hardware

RREHESMER SRR




Pipeline with Exceptions

EX.Flush
IF.Flush
ID.Flush
detection | v
unit / 'R} (W
A M
ID/EX u
— Y
e 0> EX/IMEM
M ] " R
Control > u M " »|WB MEMWE
X — SCAUSE x — L—
IEE 0— EX SEPC | 0+ M WBH—e
Shift M)
4 left 1 - |m
> * o “lu >
L > > X
Registers T\ -
Ly Y - t L
M - o Y ALU —> u
1C090000 u PC Instruction | | > o u
memory R M R Data |,
) — : o memory
[ >
-/ - R
Imm _ > »
Gen g
> unit -

) o2 RREISME L LHRFR
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Exception Properties

O Restartable exceptions

» Pipeline can flush the nstruction

= Handler executes, then returns to the instruction

0 Refetched and executed from scratch

OPC saved in SEPC register

» Identifies causing instruction

RREHESMER SRR




Exception Example

O Exception on add in

40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, X6
4c add x1, x2, x1
50 sub x15, x6, x7
54 1d x16, 100(x7)

O Handler

1090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
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Exception Example

Id x16, 100(x7) ' sub x15, x6, X7 add x1, x2, x1 : orx13,... andx12, ...

| EXFlush 1 :
IF.Flush : : :
; /~ Hazard E E
‘ detection | v ! !
unit / ! :
o EX/MEM :

u w2 MEM/WB

X [wel
Data 1
memory
1 12

Clock 6 i i Forwuzg:iing) _: E

) i g ARSI SMERLTTFR
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Exception Example

sd x26, 1000(x0) , bubble (nop) | bubble \ bubble ,orx13, ...
! | EX.Flush | :
IF.Flush ! : : :
: ID.Flush ! | I
' /” Hazard ! ! !
'__.kdetection ! : ! !
unit / Y ! w o ! !
IDIEX u | |
o X EX/MEM :
M 1
Control m @ E‘OO )
(D) Il
eft 1,
| | 13 ALU
1C090000 ~ e
Data
memory
Clock 7 | E Forwarding JI_
' | unit /<

v) M4 F KRS SRERLHRFR
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Multiple Exceptions

O Pipelining overlaps multiple instructions
= Could have multiple exceptions at once
O Simple approach: deal with exception from
earliest instruction

= Flush subsequent instructions

= “Precise” exceptions
O In complex pipelines
= Multiple instructions 1ssued per cycle

= QOut-of-order completion
= Maintaining precise exceptions is difficult!
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Imprecise Exceptions

O Just stop pipeline and save state

= Including exception cause(s)

O Let the handler work out
= Which instruction(s) had exceptions

= Which to complete or flush

0O May require “manual” completion

O Simplifies hardware, but more complex handler
software

O Not feasible for complex multiple-issue
out-of-order pipelines

RRGHESRERLWHFTFR




4.10 Instruction-Level Parallelism (ILP)

O Pipelining: executing multiple instructions
in parallel

O To increase ILP
= Deeper pipeline
0 Less work per stage = shorter clock cycle
= Multiple 1ssue
0 Replicate pipeline stages = multiple pipelines
O Start multiple instructions per clock cycle
0 CPI < 1, so use Instructions Per Cycle (IPC)

OE.g., 4GHz 4-way multiple-issue
= 16 BIPS, peak CPI = 0.25, peak IPC =4

0 But dependencies reduce this in practice
RRENSMELLWRER




Multiple Issue

O Static multiple issue
= Compiler groups instructions to be 1ssued together
= Packages them into “issue slots”

= Compiler detects and avoids hazards

O Dynamic multiple issue

m CPU examines instruction stream and chooses
instructions to issue each cycle

= Compiler can help by reordering instructions

m CPU resolves hazards using advanced techniques
at runtime

RIREHEMER ST



Speculation

O “Guess” what to do with an instruction

m Start operation as soon as possible
m Check whether guess was right

0O If so, complete the operation
0 If not, roll-back and do the right thing

O Common to static and dynamic multiple issue
O Examples

m Speculate on branch outcome
0O Roll back 1f path taken 1s different

= Speculate on load
= é:lRoll back 1f location 1s updated

G S
o ZHEJIANG UNIVERSITY
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Compiler/Hardware Speculation

O Compiler can reorder instructions
m ¢.g., move load before branch

® Can include “fix-up” instructions to recover from
Incorrect guess

O Hardware can look ahead for instructions to
execute

= Buffer results until 1t determines they are actually
needed

= Flush buffers on incorrect speculation

RREHESMER SRR




Speculation and Exceptions

O What if exception occurs on a speculatively
executed instruction?

m ¢.g., speculative load before null-pointer check

O Static speculation
= Can add ISA support for deferring exceptions

O Dynamic speculation

= Can buffer exceptions until instruction completion
(which may not occur)

RREHESMER SRR



Static Multiple Issue

O Compiler groups instructions into “issue
packets”

= Group of instructions that can be issued on a single
cycle

= Determined by pipeline resources required
O Think of an issue packet as a very long
instruction

» Specifies multiple concurrent operations
» = Very Long Instruction Word (VLIW)
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Scheduling Static Multiple Issue

O Compiler must remove some/all hazards
m Reorder instructions into 1ssue packets
= No dependencies with a packet

= Possibly some dependencies between packets

O Varies between ISAs; compiler must know!

= Pad with nop 1if necessary

RIREHEMER ST



RISC-V with Static Dual Issue

O Two-issue packets
m One ALU/branch instruction
m One load/store instruction

m 64-bit aligned
o0 ALU/branch, then load/store

0 Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM | WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM | WB
n+ 20 Load/store IF ID EX MEM | WB

RIREHEMER ST




RISC-V with Static Dual Issue

1C090000 —E@»

Tt
) 51 4
= IS / A4
N NS

ZHEJIANG UNIVERSITY

Instruction
memory

ALU >

(xe=2) (xe=2)

+
Registers
R Imm _
'\ Gen Imm \ g

Y

> —| Write
\ data
Data
ALU—> > . -
memory
Address

\ A

\

vy

Y

Y
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Hazards in the Dual-Issue RISC-V

O More instructions executing in parallel
O EX data hazard

»= Forwarding avoided stalls with single-1ssue

= Now can’t use ALU result in load/store in same packet

oadd x10, x0, x1
1d x2, 0(x10)

0O Split into two packets, effectively a stall
O Load-use hazard

= Still one cycle use latency, but now two 1nstructions

O More aggressive scheduling required

RREHESMER SRR




Scheduling Example

0 Schedule this for dual-issue RISC-V

Loop: 1d x31,0(x20) // X31=array element
add x31,x31,x21 // add scalar 1n x21
sd x31,0(x20) // store result
addi1 x20,x20,-8 // decrement pointer
blt x22,x20,Loop // branch if x22 < x20
ALU/branch Load/store cycle

Loop: 1d x31,0(x20) 1
addi x20,x20,-8 2
add x31,x31,x21 3
blt x22,x20,Loop sd x31,8(x20) 4

m [PC=5/4=1.25(c.f. peak IPC = 2)

RIREHEMER ST



Loop Unrolling

O Replicate loop body to expose more
parallelism

m Reduces loop-control overhead

O Use different registers per replication
m Called “register renaming”
= Avoid loop-carried “anti-dependencies”

O Store followed by a load of the same register
0 Aka “name dependence”

= Reuse of a register name

RREHESMER SRR



Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi x20,x20,-32 1d x28, 0(x20) 1
1d x29, 24(x20) 2
add x28,x28,x21 1d x30, 16(x20) 3
add x29,x29,x21 1d x31, 8(x20) 4
add x30,x30,x21 sd x28, 32(x20) 5
add x31,x31,x21 sd x29, 24(x20) 6
sd x30, 16(x20) 7
blt x22,x20,Lo0p sd x31, 8(x20) 8

IPC =14/8 =1.75

Closer to 2, but at cost of registers and code size

RIREHEMER ST



Dynamic Multiple Issue

O “Superscalar” processors

O CPU decides whether to issue 0, 1, 2, ...
each cycle
» Avoiding structural and data hazards

O Avoids the need for compiler scheduling

= Though 1t may still help
m Code semantics ensured by the CPU

RREHESMER SRR




Dynamic Pipeline Scheduling

O Allow the CPU to execute instructions out of
order to avoid stalls

= But commit result to registers in order

O Example

1d x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

m Can start sub while add is waiting for 1d

RREHESMER SRR




Dynamically Scheduled CPU

Instruction fetch , /
. In-order issue

Y \ 4 \ Y

Reservation | | Reservation Reservation || Reservation | <~
station station . station station \
Funct'ional Integer Integer N Floqting Load- Out-of-order execute
units point storeJ

Com.mit In-order commit
unit

v) M4 F RIRENSRER LR
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Register Renaming

0 Reservation stations and reorder buffer
effectively provide register renaming

O On instruction issue to reservation station

m If operand 1s available 1n register file or reorder
buffer

0 Copied to reservation station
0 No longer required in the register; can be overwritten
m If operand 1s not yet available

0 It will be provided to the reservation station by a
function unit

0O Register update may not be required

RREHESMER SRR



Speculation

O Predict branch and continue issuing

m Don’t commit until branch outcome determined

O Load speculation

= Avoid load and cache miss delay
O Predict the effective address
O Predict loaded value
0 Load before completing outstanding stores

0 Bypass stored values to load unit

= Don’t commit load until speculation cleared

RIREHEMER ST



Why Do Dynamic Scheduling?

O Why not just let the compiler schedule
code?

O Not all stalls are predicable
m ¢.g., cache misses

O Can’t always schedule around branches

= Branch outcome 1s dynamically determined

O Different implementations of an ISA have
different latencies and hazards

RRGHESRERLWHFTFR




Does Multiple Issue Work?
The BIG Picture

O Yes, but not as much as we’d like

O Programs have real dependencies that limit ILP
O Some dependencies are hard to eliminate
® ¢.g., pointer aliasing
O Some parallelism is hard to expose
= Limited window size during instruction issue
O Memory delays and limited bandwidth
= Hard to keep pipelines full
O Speculation can help if done well

‘) i 2 S RSN SMER SHSTER

Uisoi?  ZHEJIANG UNIVERSITY




Power Efficiency

O Complexity of dynamic scheduling and
speculations requires power

O Multiple simpler cores may be better

Microprocessor Year Clock Rate | Pipeline Issue | Out-of-order/ | Cores Power
Stages width Speculation
i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
UltraSparc Il 2003 1950MHz 14 4 No 1 90W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W
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_4.11 Cortex A53 and Intel |7_
" Poessor | ARMAS | imelCorei7o20

Market

Thermal design power

Clock rate
Cores/Chip
Floating point?

Multiple issue?

Peak instructions/clock cycle

Pipeline stages

Pipeline schedule

Branch prediction
1%t level caches/core
2"d |evel caches/core

3" |evel caches (shared)

2N 8 »
Nk
N °
s o1
i S ZHEJIANG UNIVERSITY

Personal Mobile Device

100 milliWatts
(1 core @ 1 GHz)

1.5 GHz
4 (configurable)
Yes
Dynamic
2
8

Static in-order

Hybrid
16-64 KiB I, 16-64 KiB D
128-2048 KiB
(platform dependent)

Server, cloud

130 Watts

2.66 GHz
4
Yes
Dynamic
4
14

Dynamic out-of-order
with speculation

2-level
32 KiB 1,32 KiB D
256 KiB (per core)
2-8 MB
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ARM Cortex-A53 Pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- ] ALU pipe 0 >
Integer
AGU |« | Register —

+ i e ALU pipe 1 >

B [ Hybrid file pIp

. Predictor
|| Instruction N MAC pipe N
Cache - | Writeback
Indirect

> Predictor .
1 Divide pipe >
Issue N Load pipe .
Ly Store pipe >

Instruction Decode Floating Point execute
NEON MUL/DIV/SQRT pipe
13-Entry . .
Early . Main Late Register
| Decode »| Instruction —+1 5o e ™ Decode file :
Queue ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5

e dof RS SMER LTI
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ARM Cortex-A53 Performance

10.00

B Memory hierarchy stalls
9.00 ——  Pipeline stalls 556
M [deal CPI

8.00

7.00

6.00

5.00

4.00
3.37

3.00

2.14
2.00 1.75 1.76

117 1.2 . l
j— B m
m perlb nch sjeng bzip2 gobmk xalancbmk astar omnetpp mcf
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Core i7 Pipeline

128-Entry | 32 KB Inst. cache (four-way associative) |«
inst. TLB |4
(four-way) 16-Byte pre-decode+macro-op
# * fusion, fetch buffer
v
Inst';t:::o n [ 18-Entry instruction queue
hardware | > g g >
Complex Simple Simple Simple
Micro ¥ Mmacro-op  macro-op macro-op macro-op
-code - decoder decoder decoder decoder
. v v v
28-Entry micro-op loop stream detect buffer
|
=
] Register alias table and allocator |
Retirement v
register file |7 128-Entry reorder buffer
v
P 36-Entry reservation station
v v v v v v
ALU ALU Load Store Store ALU
shift shift address | address data shift
I [ [
SSE SSE v v v SSE
shuffle shuffle Memory order buffer shuffle
ALU ALU ALU
| | |
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FOV FDIV & load FDIV
1 1 T
vy Y

vY
512-Entry unified | 64-Entry data TLB 32-KB dual-ported data

\ 4
256 KB unified |2
L2TLB (4-way) | (4-way associative) | | cache (8-way associative) —>

cache (eight-way)
v 4

8 MB all core shared and inclusive L3 ——» Uncore arbiter (handles scheduling and
cache (16-way associative) D clock/power state differences)
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Core i7 Performance

B e e
Stalls, misspeculation
Ideal CPI 267 Branch misprediction % m Wasted work %
M [dea
T T S S S RS RS S USSR S S SRR S - 40% A
212 35%
A i -~ 30% A
25%
% 1.5 - -~ - 20% -
1.23
15% -
1.02 1.06
1_-""_"_"""""""""_"2" B E BN B 10%
074 077
050 061 068 5% -
054044 & W B & & & & B b
0% -
Q@é‘

INNEEEEEEEEN B

0 ¥
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4.12 Matrix Multiply

O Unrolled C code

1 #include <x86intrin.h>

2 #define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)
5 {

6 for ( int i = 0; i < n; i+=UNROLL*4 )

7 for ( int j = 0; j < n; j++ ) {

8 __m256d c[4];

9 for ( int x = 0; x < UNROLL; x++ )

10 c[x] = mm256 load pd(C+i+x*4+j*n);

11

12 for( int k = 0; k < n; k++ )

13 {

14 __m256d b = mm256_broadcast_sd(B+k+j*n) ;
15 for (int x = 0; x < UNROLL; x++)

16 c[x] = _mm256_add pd(c[x],

17 _mm256_mul pd( mm256_ load pd(A+n*k+x*4+i), b));
18 }

19

20 for ( int x = 0; x < UNROLL; x++ )

21 _mm256_store_pd(C+i+x*4+j*n, c[x]);

22 '}

23 }

v) 5 F RAE SRER S THITER
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Matrix Multiply

O Assembly code:

vmovapd (%$rll) , $ymm4
mov %rbx, $rax

Load 4 elements of C into %$ymm4
register %rax = %rbx

register %ecx = 0

Load 4 elements of C into %$ymm3
Load 4 elements of C into $ymm2
Load 4 elements of C into $ymml

Xor %ecx,%ecx

vmovapd 0x20 ($rll) , $ymm3
vmovapd 0x40 ($rll) , $ymm2
vmovapd 0x60 ($rll) , $ymml

H H o H H H

vbroadcastsd (%rcx,%r9,1) ,%ymmO
add $0x8,%rcx # register %rcx = %rcx + 8
vmulpd (%rax) ,%$ymmO, $ymm5
vaddpd $ymm5, $ymm4 , $ymmé
vmulpd 0x20 (%$rax) , $ymmO, $ymm5
vaddpd $ymm5, $ymm3, $ymm3
vmulpd 0x40 (%$rax) , $ymmO, $ymm5
vmulpd 0x60 (%rax) , $ymmO , $ymmO
add %r8,%rax
cmp %rl0,%rcx

Make 4 copies of B element

© 00 Jd o it WD R

Parallel mul %$ymml,4 A elements
Parallel add $ymm5, %ymmé
Parallel mul %$ymml,4 A elements
Parallel add $ymm5, $ymm3
Parallel mul %$ymml,4 A elements

L e
& W N RO

Parallel mul $ymml,4 A elements

[
(6]

register %$rax = %rax + %r8

=
o

compare %r8 to %rax

17 vaddpd %$ymm5, $ymm2, $ymm2 Parallel add %$ymm5, $ymm2

18 vaddpd %ymmO, $ymml, $ymml Parallel add $ymmO, $ymml

19 jne 68 <dgemm+0x68> jump if not %r8 != %rax

20 add $0x1,%esi register % esi = esi + 1

21 vmovapd %ymm4, ($rll) Store %ymm4 into C elements
22 vmovapd %ymm3,0x20 (%$rll)

N
w

vmovapd %$ymm2,0x40 (%$rll) C elements

vmovapd %ymml,0x60 ($rll)

=N RS SR LTS
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Store %$ymm2 into
Store %ymml into

FH H o H H H H H H H HH N K

%
4
Store %$ymm3 into 4 C elements
4
4

N
[~

C elements




Performance Impact

16.0 1

12.0 7

8.0 1

GFLOPS

4.0 -

unoptimized AVX AVX+unroll
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4.14 Fallacies

O Pipelining is easy (!)

m The basic 1dea is easy
= The devil 1s 1n the details
O e.g., detecting data hazards
O Pipelining is independent of technology
= So why haven’t we always done pipelining?
= More transistors make more advanced techniques feasible

= Pipeline-related ISA design needs to take account of
technology trends

O e.g., predicated instructions
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Pitfalls

O Poor ISA design can make pipelining harder
m ¢.g., complex instruction sets (VAX, [A-32)

O Significant overhead to make pipelining work
0 IA-32 micro-op approach

m ¢.g., complex addressing modes

O Register update side effects, memory indirection

m ¢.g., delayed branches
0 Advanced pipelines have long delay slots
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Concluding Remarks

O ISA influences design of datapath and control
O Datapath and control influence design of ISA

O Pipelining improves instruction throughput
using parallelism

= More instructions completed per second
= Latency for each instruction not reduced

O Hazards: structural, data, control
O Multiple issue and dynamic scheduling (ILP)

= Dependencies limit achievable parallelism
= Complexity leads to the power wall
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Homework
O04.1,4.4,4.6,4.7,4.9,4.11,4.16,4.18,4.20,4.25
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