
系统结构与网络安全研究所

The Processor-Part2
林 芃

Lin Peng
penglin@zju.edu.cn

Computer Organization & Design
The Hardware/Software Interface

计算机组成与设计

Chapter 4

系统结构与网络安全研究所

4.5 An overview of pipelining
p Calculate cycle time assuming negligible delays except:

n memory (200ps), ALU and adders (200ps), register file access (100ps)

jump

系统结构与网络安全研究所

Single Cycle Processor - performance of ld

200ps 200ps200ps100+100=200ps

系统结构与网络安全研究所

Performance of Single Cycle Processor

p Assume time for stages is
n 100ps for register read or write
n 200ps for other stages

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

ld 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

系统结构与网络安全研究所

Performance Issues
pLongest delay determines clock period

n Critical path: load instruction
n Instruction memory ® register file ®ALU ®

data memory ® register file
pNot feasible to vary period for different

instructions
pViolates design principle

n Making the common case fast
pWe will improve performance by pipelining

系统结构与网络安全研究所

Pipelining Analogy
pPipelined laundry: overlapping execution

n Parallelism improves performance

Four loads:
Speedup
= 8/3.5 = 2.3

Non-stop:
Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

系统结构与网络安全研究所

RISC-V Pipeline
p Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

系统结构与网络安全研究所

Pipelining RISC-V instruction set
p Since there are five separate stages, we can have a pipeline

in which one instruction is in each stage.
p CPI is decreased to 1, since one instruction will be issued

(or finished) each cycle.
p During any cycle, one instruction is present in each stage.

p Ideally, performance is increased five fold !

系统结构与网络安全研究所

p Assume time for stages is
n 100ps for register read or write
n 200ps for other stages

p Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

ld 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Pipeline Performance

系统结构与网络安全研究所

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

系统结构与网络安全研究所

Pipeline Speedup
p If all stages are balanced

n i.e., all take the same time
n Time between instructionspipelined

= Time between instructionsnonpipelined
/Number of stages

p If not balanced, speedup is less
pSpeedup due to increased throughput

n Latency (time for each instruction) does not
decrease

系统结构与网络安全研究所

Pipelining and ISA Design
pRISC-V ISA designed for pipelining

n All instructions are 32-bits
pEasier to fetch and decode in one cycle
pc.f. x86: 1- to 17-byte instructions

n Few and regular instruction formats
pCan decode and read registers in one step

n Load/store addressing
pCan calculate address in 3rd stage, access

memory in 4th stage

系统结构与网络安全研究所

Hazards
pSituations that prevent starting the next

instruction in the next cycle
pStructure hazards

n A required resource is busy
pData hazard

n Need to wait for previous instruction to complete
its data read/write

pControl hazard
n Deciding on control action depends on previous

instruction

系统结构与网络安全研究所

Structure Hazards
pConflict for use of a resource
p In RISC-V pipeline with a single memory

n Load/store requires data access
n Instruction fetch would have to stall for that cycle

pWould cause a pipeline “bubble”

pHence, pipelined datapaths require separate
instruction/data memories
n Or separate instruction/data caches

系统结构与网络安全研究所

Data Hazards
pAn instruction depends on completion of

data access by a previous instruction
n add x19, x0, x1
sub x2, x19, x3

系统结构与网络安全研究所

Forwarding (aka Bypassing)
pUse result when it is computed

n Don’t wait for it to be stored in a register
n Requires extra connections in the datapath

系统结构与网络安全研究所

Load-Use Data Hazard
pCan’t always avoid stalls by forwarding

n If value not computed when needed
n Can’t forward backward in time!

系统结构与网络安全研究所

Code Scheduling to Avoid Stalls

pReorder code to avoid use of load result in
the next instruction

pC code for a = b + e; c = b + f;

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles

系统结构与网络安全研究所

Control Hazards
pBranch determines flow of control

n Fetching next instruction depends on branch
outcome

n Pipeline can’t always fetch correct
instruction
pStill working on ID stage of branch

pIn RISC-V pipeline
n Need to compare registers and compute

target early in the pipeline
n Add hardware to do it in ID stage

系统结构与网络安全研究所

Stall on Branch
pWait until branch outcome determined

before fetching next instruction

系统结构与网络安全研究所

Branch Prediction
pLonger pipelines can’t readily determine

branch outcome early
n Stall penalty becomes unacceptable

pPredict outcome of branch
n Only stall if prediction is wrong

p In RISC-V pipeline
n Can predict branches not taken
n Fetch instruction after branch, with no delay

系统结构与网络安全研究所

More-Realistic Branch Prediction
pStatic branch prediction

n Based on typical branch behavior
n Example: loop and if-statement branches

pPredict backward branches taken
pPredict forward branches not taken

pDynamic branch prediction
n Hardware measures actual branch behavior

pe.g., record recent history of each branch
n Assume future behavior will continue the trend

pWhen wrong, stall while re-fetching, and update history

系统结构与网络安全研究所

Pipeline Summary

pPipelining improves performance by
increasing instruction throughput
n Executes multiple instructions in parallel
n Each instruction has the same latency

pSubject to hazards
n Structure, data, control

p Instruction set design affects complexity of
pipeline implementation

The BIG Picture

系统结构与网络安全研究所

4.6 RISC-V Pipelined Datapath

WB

MEM

Right-to-left
flow leads to
hazards

系统结构与网络安全研究所

Pipeline registers
pNeed registers between stages

n To hold information produced in previous cycle

系统结构与网络安全研究所

Pipeline Operation
pCycle-by-cycle flow of instructions through

the pipelined datapath
n “Single-clock-cycle” pipeline diagram

pShows pipeline usage in a single cycle
pHighlight resources used

n c.f. “multi-clock-cycle” diagram
pGraph of operation over time

pWe’ll look at “single-clock-cycle” diagrams
for load & store

系统结构与网络安全研究所

IF for Load, Store, …

系统结构与网络安全研究所

ID for Load, Store, …

系统结构与网络安全研究所

EX for Load

系统结构与网络安全研究所

MEM for Load

系统结构与网络安全研究所

WB for Load

Wrong
register
number

系统结构与网络安全研究所

Corrected Datapath for Load

系统结构与网络安全研究所

EX for Store

系统结构与网络安全研究所

MEM for Store

系统结构与网络安全研究所

WB for Store

系统结构与网络安全研究所

Multi-Cycle Pipeline Diagram
pForm showing resource usage

系统结构与网络安全研究所

Multi-Cycle Pipeline Diagram

pTraditional form

系统结构与网络安全研究所

Single-Cycle Pipeline Diagram

pState of pipeline in a given cycle

系统结构与网络安全研究所

Pipelined Control (Simplified)

系统结构与网络安全研究所

Pipelined Control

pControl signals derived from instruction
n As in single-cycle implementation

系统结构与网络安全研究所

Pipelined Control

系统结构与网络安全研究所

4.7 Data Hazards
pConsider this sequence:

sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)

pWe can resolve hazards with forwarding
n How do we detect when to forward?

系统结构与网络安全研究所

Dependencies & Forwarding

系统结构与网络安全研究所

Detecting the Need to Forward
p Pass register numbers along pipeline

n e.g., ID/EX.RegisterRs1 = register number for Rs1 sitting
in ID/EX pipeline register

p ALU operand register numbers in EX stage are
given by
n ID/EX.RegisterRs1, ID/EX.RegisterRs2

p Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

系统结构与网络安全研究所

Detecting the Need to Forward
pBut only if forwarding instruction will write

to a register!
n EX/MEM.RegWrite, MEM/WB.RegWrite

pAnd only if Rd for that instruction is not x0
n EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

系统结构与网络安全研究所

Forwarding Paths

系统结构与网络安全研究所

Forwarding Conditions
Mux control Source Explanation
ForwardA = 00 ID/EX The first ALU operand comes from the register file.
ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU

result.
ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or

an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU
result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory
or an earlier ALU result.

系统结构与网络安全研究所

Double Data Hazard
pConsider the sequence:

add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

pBoth hazards occur
n Want to use the most recent

pRevise MEM hazard condition
n Only fwd if EX hazard condition isn’t true

系统结构与网络安全研究所

Revised Forwarding Condition
p MEM hazard

n if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

n if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

系统结构与网络安全研究所

Datapath with Forwarding

系统结构与网络安全研究所

Load-Use Hazard Detection
pCheck when using instruction is decoded in

ID stage
pALU operand register numbers in ID stage

are given by
n IF/ID.RegisterRs1, IF/ID.RegisterRs2

pLoad-use hazard when
n ID/EX.MemRead and

((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRs2))

p If detected, stall and insert bubble

系统结构与网络安全研究所

How to Stall the Pipeline
pForce control values in ID/EX register

to 0
n EX, MEM and WB do nop (no-operation)

pPrevent update of PC and IF/ID register
n Using instruction is decoded again
n Following instruction is fetched again
n 1-cycle stall allows MEM to read data for ld

pCan subsequently forward to EX stage

系统结构与网络安全研究所

Load-Use Data Hazard

Stall inserted
here

系统结构与网络安全研究所

Datapath with Hazard Detection

系统结构与网络安全研究所

Stalls and Performance

pStalls reduce performance
n But are required to get correct results

pCompiler can arrange code to avoid hazards
and stalls
n Requires knowledge of the pipeline structure

The BIG Picture

系统结构与网络安全研究所

4.8 Branch Hazards
p If branch outcome determined in MEM

PC

Flush these
instructions
(Set control
values to 0)

系统结构与网络安全研究所

Reducing Branch Delay
p Move hardware to determine outcome to ID stage

n Target address adder
n Register comparator

p Example: branch taken
36: sub x10, x4, x8
40: beq x1, x3, 32 // PC-relative branch

// to 40+32=72
44: and x12, x2, x5
48: orr x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7

...
72: ld x4, 50(x7)

系统结构与网络安全研究所

Example: Branch Taken

系统结构与网络安全研究所

Example: Branch Taken

系统结构与网络安全研究所

Dynamic Branch Prediction
p In deeper and superscalar pipelines, branch

penalty is more significant
p Use dynamic prediction

n Branch prediction buffer (aka branch history table)
n Indexed by recent branch instruction addresses (lower part)
n Stores outcome (taken/not taken)
n To execute a branch

p Check table, expect the same outcome
p Start fetching from fall-through or target
p If wrong, flush pipeline and flip prediction

系统结构与网络安全研究所

1-Bit Predictor: Shortcoming

p Inner loop branches mispredicted twice!

n Mispredict as taken on last iteration of inner loop
n Then mispredict as not taken on first iteration of

inner loop next time around

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

系统结构与网络安全研究所

2-Bit Predictor
pOnly change prediction on two successive

mispredictions

系统结构与网络安全研究所

Calculating the Branch Target
pEven with predictor, still need to calculate

the target address
n 1-cycle penalty for a taken branch

pBranch target buffer
n Cache of target addresses
n Indexed by PC when instruction fetched

p If hit and instruction is branch predicted taken, can fetch
target immediately

系统结构与网络安全研究所

4.9 Exceptions and Interrupts
p“Unexpected” events requiring change

in flow of control
n Different ISAs use the terms differently

pException
n Arises within the CPU

pe.g., undefined opcode, syscall, hardware malfunction …

p Interrupt
n From an external I/O controller

pDealing with them without sacrificing
performance is hard

系统结构与网络安全研究所

Handling Exceptions
pSave PC of offending (or interrupted)

instruction
n In RISC-V: Supervisor Exception Program Counter

(SEPC)
pSave indication of the problem

n In RISC-V: Supervisor Exception Cause Register
(SCAUSE)

n 64 bits, but most bits unused
pException code field: 2 for undefined opcode, 12 for

hardware malfunction, …
pJump to handler

n Assume at 0000 0000 1C09 0000hex

系统结构与网络安全研究所

An Alternate Mechanism
pVectored Interrupts

n Handler address determined by the cause
pException vector address to be added to a

vector table base register:
n Undefined opcode 00 0100 0000two
n Hardware malfunction: 01 1000 0000two
n …: …

p Instructions either
n Deal with the interrupt, or
n Jump to real handler

系统结构与网络安全研究所

Handler Actions
pRead cause, and transfer to relevant

handler
pDetermine action required
p If restartable

n Take corrective action
n use SEPC to return to program

pOtherwise
n Terminate program
n Report error using SEPC, SCAUSE, …

系统结构与网络安全研究所

Exceptions in a Pipeline
pAnother form of control hazard
pConsider malfunction on add in EX stage

add x1, x2, x1

n Prevent x1 from being clobbered
n Complete previous instructions
n Flush add and subsequent instructions
n Set SEPC and SCAUSE register values
n Transfer control to handler

pSimilar to mispredicted branch
n Use much of the same hardware

系统结构与网络安全研究所

Pipeline with Exceptions

系统结构与网络安全研究所

Exception Properties
pRestartable exceptions

n Pipeline can flush the instruction
n Handler executes, then returns to the instruction

pRefetched and executed from scratch

pPC saved in SEPC register
n Identifies causing instruction

系统结构与网络安全研究所

Exception Example
p Exception on add in

40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

p Handler
1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

系统结构与网络安全研究所

Exception Example

系统结构与网络安全研究所

Exception Example

系统结构与网络安全研究所

Multiple Exceptions
p Pipelining overlaps multiple instructions

n Could have multiple exceptions at once
p Simple approach: deal with exception from

earliest instruction
n Flush subsequent instructions
n “Precise” exceptions

p In complex pipelines
n Multiple instructions issued per cycle
n Out-of-order completion
n Maintaining precise exceptions is difficult!

系统结构与网络安全研究所

Imprecise Exceptions
p Just stop pipeline and save state

n Including exception cause(s)
p Let the handler work out

n Which instruction(s) had exceptions
n Which to complete or flush

p May require “manual” completion

p Simplifies hardware, but more complex handler
software

p Not feasible for complex multiple-issue
out-of-order pipelines

系统结构与网络安全研究所

4.10 Instruction-Level Parallelism (ILP)

pPipelining: executing multiple instructions
in parallel

pTo increase ILP
n Deeper pipeline

pLess work per stage Þ shorter clock cycle
n Multiple issue

pReplicate pipeline stages Þ multiple pipelines
pStart multiple instructions per clock cycle
pCPI < 1, so use Instructions Per Cycle (IPC)
pE.g., 4GHz 4-way multiple-issue

n 16 BIPS, peak CPI = 0.25, peak IPC = 4
pBut dependencies reduce this in practice

系统结构与网络安全研究所

Multiple Issue
pStatic multiple issue

n Compiler groups instructions to be issued together
n Packages them into “issue slots”
n Compiler detects and avoids hazards

pDynamic multiple issue
n CPU examines instruction stream and chooses

instructions to issue each cycle
n Compiler can help by reordering instructions
n CPU resolves hazards using advanced techniques

at runtime

系统结构与网络安全研究所

Speculation
p“Guess” what to do with an instruction

n Start operation as soon as possible
n Check whether guess was right

p If so, complete the operation
p If not, roll-back and do the right thing

pCommon to static and dynamic multiple issue
pExamples

n Speculate on branch outcome
pRoll back if path taken is different

n Speculate on load
pRoll back if location is updated

系统结构与网络安全研究所

Compiler/Hardware Speculation
pCompiler can reorder instructions

n e.g., move load before branch
n Can include “fix-up” instructions to recover from

incorrect guess
pHardware can look ahead for instructions to

execute
n Buffer results until it determines they are actually

needed
n Flush buffers on incorrect speculation

系统结构与网络安全研究所

Speculation and Exceptions
pWhat if exception occurs on a speculatively

executed instruction?
n e.g., speculative load before null-pointer check

pStatic speculation
n Can add ISA support for deferring exceptions

pDynamic speculation
n Can buffer exceptions until instruction completion

(which may not occur)

系统结构与网络安全研究所

Static Multiple Issue
pCompiler groups instructions into “issue

packets”
n Group of instructions that can be issued on a single

cycle
n Determined by pipeline resources required

pThink of an issue packet as a very long
instruction
n Specifies multiple concurrent operations
n Þ Very Long Instruction Word (VLIW)

系统结构与网络安全研究所

Scheduling Static Multiple Issue
pCompiler must remove some/all hazards

n Reorder instructions into issue packets
n No dependencies with a packet
n Possibly some dependencies between packets

pVaries between ISAs; compiler must know!
n Pad with nop if necessary

系统结构与网络安全研究所

RISC-V with Static Dual Issue
p Two-issue packets

n One ALU/branch instruction
n One load/store instruction
n 64-bit aligned

p ALU/branch, then load/store
p Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

系统结构与网络安全研究所

RISC-V with Static Dual Issue

系统结构与网络安全研究所

Hazards in the Dual-Issue RISC-V
p More instructions executing in parallel
p EX data hazard

n Forwarding avoided stalls with single-issue
n Now can’t use ALU result in load/store in same packet

p add x10, x0, x1
ld x2, 0(x10)

p Split into two packets, effectively a stall

p Load-use hazard
n Still one cycle use latency, but now two instructions

p More aggressive scheduling required

系统结构与网络安全研究所

Scheduling Example

pSchedule this for dual-issue RISC-V
Loop: ld x31,0(x20) // x31=array element

add x31,x31,x21 // add scalar in x21
sd x31,0(x20) // store result
addi x20,x20,-8 // decrement pointer
blt x22,x20,Loop // branch if x22 < x20

ALU/branch Load/store cycle
Loop: nop ld x31,0(x20) 1

addi x20,x20,-8 nop 2

add x31,x31,x21 nop 3

blt x22,x20,Loop sd x31,8(x20) 4

n IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

系统结构与网络安全研究所

Loop Unrolling
pReplicate loop body to expose more

parallelism
n Reduces loop-control overhead

pUse different registers per replication
n Called “register renaming”
n Avoid loop-carried “anti-dependencies”

pStore followed by a load of the same register
pAka “name dependence”

n Reuse of a register name

系统结构与网络安全研究所

Loop Unrolling Example
ALU/branch Load/store cycle

Loop: addi x20,x20,-32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28,x28,x21 ld x30, 16(x20) 3

add x29,x29,x21 ld x31, 8(x20) 4

add x30,x30,x21 sd x28, 32(x20) 5

add x31,x31,x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22,x20,Loop sd x31, 8(x20) 8

IPC = 14/8 = 1.75
Closer to 2, but at cost of registers and code size

系统结构与网络安全研究所

Dynamic Multiple Issue
p“Superscalar” processors
pCPU decides whether to issue 0, 1, 2, …

each cycle
n Avoiding structural and data hazards

pAvoids the need for compiler scheduling
n Though it may still help
n Code semantics ensured by the CPU

系统结构与网络安全研究所

Dynamic Pipeline Scheduling
pAllow the CPU to execute instructions out of

order to avoid stalls
n But commit result to registers in order

pExample
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

n Can start sub while add is waiting for ld

系统结构与网络安全研究所

Dynamically Scheduled CPU

Results also sent
to any waiting

reservation stations

Reorders buffer for
register writes

Can supply
operands for

issued instructions

Preserves
dependencies

Hold pending
operands

系统结构与网络安全研究所

Register Renaming
pReservation stations and reorder buffer

effectively provide register renaming
pOn instruction issue to reservation station

n If operand is available in register file or reorder
buffer
pCopied to reservation station
pNo longer required in the register; can be overwritten

n If operand is not yet available
p It will be provided to the reservation station by a

function unit
pRegister update may not be required

系统结构与网络安全研究所

Speculation
pPredict branch and continue issuing

n Don’t commit until branch outcome determined
pLoad speculation

n Avoid load and cache miss delay
pPredict the effective address
pPredict loaded value
pLoad before completing outstanding stores
pBypass stored values to load unit

n Don’t commit load until speculation cleared

系统结构与网络安全研究所

Why Do Dynamic Scheduling?
pWhy not just let the compiler schedule

code?
pNot all stalls are predicable

n e.g., cache misses
pCan’t always schedule around branches

n Branch outcome is dynamically determined
pDifferent implementations of an ISA have

different latencies and hazards

系统结构与网络安全研究所

Does Multiple Issue Work?

p Yes, but not as much as we’d like
p Programs have real dependencies that limit ILP
p Some dependencies are hard to eliminate

n e.g., pointer aliasing
p Some parallelism is hard to expose

n Limited window size during instruction issue
p Memory delays and limited bandwidth

n Hard to keep pipelines full
p Speculation can help if done well

The BIG Picture

系统结构与网络安全研究所

Power Efficiency

pComplexity of dynamic scheduling and
speculations requires power

pMultiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline

Stages
Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

系统结构与网络安全研究所

4.11 Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 920

Market Personal Mobile Device Server, cloud
Thermal design power 100 milliWatts

(1 core @ 1 GHz)
130 Watts

Clock rate 1.5 GHz 2.66 GHz
Cores/Chip 4 (configurable) 4
Floating point? Yes Yes
Multiple issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline stages 8 14
Pipeline schedule Static in-order Dynamic out-of-order

with speculation
Branch prediction Hybrid 2-level
1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D
2nd level caches/core 128-2048 KiB 256 KiB (per core)
3rd level caches (shared) (platform dependent) 2-8 MB

系统结构与网络安全研究所

ARM Cortex-A53 Pipeline

系统结构与网络安全研究所

ARM Cortex-A53 Performance

系统结构与网络安全研究所

Core i7 Pipeline

系统结构与网络安全研究所

Core i7 Performance

系统结构与网络安全研究所

4.12 Matrix Multiply
pUnrolled C code
1 #include <x86intrin.h>
2 #define UNROLL (4)
3
4 void dgemm (int n, double* A, double* B, double* C)
5 {
6 for (int i = 0; i < n; i+=UNROLL*4)
7 for (int j = 0; j < n; j++) {
8 __m256d c[4];
9 for (int x = 0; x < UNROLL; x++)
10 c[x] = _mm256_load_pd(C+i+x*4+j*n);
11
12 for(int k = 0; k < n; k++)
13 {
14 __m256d b = _mm256_broadcast_sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)
16 c[x] = _mm256_add_pd(c[x],
17 _mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+i), b));
18 }
19
20 for (int x = 0; x < UNROLL; x++)
21 _mm256_store_pd(C+i+x*4+j*n, c[x]);
22 }
23 }

系统结构与网络安全研究所

Matrix Multiply
pAssembly code:
1 vmovapd (%r11),%ymm4 # Load 4 elements of C into %ymm4
2 mov %rbx,%rax # register %rax = %rbx
3 xor %ecx,%ecx # register %ecx = 0
4 vmovapd 0x20(%r11),%ymm3 # Load 4 elements of C into %ymm3
5 vmovapd 0x40(%r11),%ymm2 # Load 4 elements of C into %ymm2
6 vmovapd 0x60(%r11),%ymm1 # Load 4 elements of C into %ymm1
7 vbroadcastsd (%rcx,%r9,1),%ymm0 # Make 4 copies of B element
8 add $0x8,%rcx # register %rcx = %rcx + 8
9 vmulpd (%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements
10 vaddpd %ymm5,%ymm4,%ymm4 # Parallel add %ymm5, %ymm4
11 vmulpd 0x20(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements
12 vaddpd %ymm5,%ymm3,%ymm3 # Parallel add %ymm5, %ymm3
13 vmulpd 0x40(%rax),%ymm0,%ymm5 # Parallel mul %ymm1,4 A elements
14 vmulpd 0x60(%rax),%ymm0,%ymm0 # Parallel mul %ymm1,4 A elements
15 add %r8,%rax # register %rax = %rax + %r8
16 cmp %r10,%rcx # compare %r8 to %rax
17 vaddpd %ymm5,%ymm2,%ymm2 # Parallel add %ymm5, %ymm2
18 vaddpd %ymm0,%ymm1,%ymm1 # Parallel add %ymm0, %ymm1
19 jne 68 <dgemm+0x68> # jump if not %r8 != %rax
20 add $0x1,%esi # register % esi = % esi + 1
21 vmovapd %ymm4,(%r11) # Store %ymm4 into 4 C elements
22 vmovapd %ymm3,0x20(%r11) # Store %ymm3 into 4 C elements
23 vmovapd %ymm2,0x40(%r11) # Store %ymm2 into 4 C elements
24 vmovapd %ymm1,0x60(%r11) # Store %ymm1 into 4 C elements

系统结构与网络安全研究所

Performance Impact

系统结构与网络安全研究所

4.14 Fallacies
p Pipelining is easy (!)

n The basic idea is easy
n The devil is in the details

p e.g., detecting data hazards

p Pipelining is independent of technology
n So why haven’t we always done pipelining?
n More transistors make more advanced techniques feasible
n Pipeline-related ISA design needs to take account of

technology trends
p e.g., predicated instructions

系统结构与网络安全研究所

Pitfalls
pPoor ISA design can make pipelining harder

n e.g., complex instruction sets (VAX, IA-32)
pSignificant overhead to make pipelining work
p IA-32 micro-op approach

n e.g., complex addressing modes
pRegister update side effects, memory indirection

n e.g., delayed branches
pAdvanced pipelines have long delay slots

系统结构与网络安全研究所

Concluding Remarks
p ISA influences design of datapath and control
p Datapath and control influence design of ISA
p Pipelining improves instruction throughput

using parallelism
n More instructions completed per second
n Latency for each instruction not reduced

p Hazards: structural, data, control
p Multiple issue and dynamic scheduling (ILP)

n Dependencies limit achievable parallelism
n Complexity leads to the power wall

系统结构与网络安全研究所

Homework
p4.1, 4.4,4.6,4.7,4.9,4.11,4.16,4.18,4.20,4.25

系统结构与网络安全研究所

¤END

