

系统结构与网络安全研究所

计算机组成与设计

Computer Organization & Design

The Hardware/Software Interface

Chapter 4

The Processor-Part2

林 芃 Lin Peng

penglin@zju.edu.cn

4.5 An overview of pipelining

- □ Calculate cycle time assuming negligible delays except:
 - memory (200ps), ALU and adders (200ps), register file access (100ps)

Single Cycle Processor - performance of Id

200ps 100+100=200ps 200ps 200ps

Performance of Single Cycle Processor

□ Assume time for stages is

- 100ps for register read or write
- 200ps for other stages

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
ld	200ps	100 ps	200ps	200ps	100 ps	800ps
sd	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

Performance Issues

- **Longest delay determines clock period**
 - Critical path: load instruction
 - Instruction memory → register file → ALU → data memory → register file
- Not feasible to vary period for different instructions
- **□** Violates design principle
 - Making the common case fast
- **■** We will improve performance by pipelining

Pipelining Analogy

□ Pipelined laundry: overlapping execution

Parallelism improves performance

Four loads:

Speedup

= 8/3.5 = 2.3

Non-stop:

Speedup

 $= 2n/0.5n + 1.5 \approx 4$

= number of stages

RISC-V Pipeline

- □ Five stages, one step per stage
 - 1. IF: Instruction fetch from memory
 - 2. ID: Instruction decode & register read
 - 3. EX: Execute operation or calculate address
 - 4. MEM: Access memory operand
 - 5. WB: Write result back to register

Pipelining RISC-V instruction set

- □ Since there are five separate stages, we can have a pipeline in which one instruction is in each stage.
- □ CPI is decreased to 1, since one instruction will be issued (or finished) each cycle.
- □ During any cycle, one instruction is present in each stage.

	Clock Number								
	1	2	3	4	5	6	7	8	9
Instruction i	IF	ID	EX	MEM	WB				
Instruction i+1		IF	ID	EX	MEM	WB	į .		
Instruction i+2			IF	ID	EX	MEM	WB		
Instruction i+3				IF	ID	EX	MEM	WB	
Instruction i+4				1	IF	ID	EX	MEM	WB

□ Ideally, performance is increased five fold!

Pipeline Performance

- **□** Assume time for stages is
 - 100ps for register read or write
 - 200ps for other stages
- Compare pipelined datapath with single-cycle datapath

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
ld	200ps	100 ps	200ps	200ps	100 ps	800ps
sd	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

Pipeline Performance

Pipeline Speedup

☐ If all stages are balanced

- i.e., all take the same time
- Time between instructions_{pipelined}
 - = Time between instructions_{nonpipelined}
 /Number of stages
- ☐ If not balanced, speedup is less
- **□** Speedup due to increased throughput
 - Latency (time for each instruction) does not decrease

Pipelining and ISA Design

□RISC-V ISA designed for pipelining

- All instructions are 32-bits
 - ■Easier to fetch and decode in one cycle
 - □c.f. x86: 1- to 17-byte instructions
- Few and regular instruction formats
 - □Can decode and read registers in one step
- Load/store addressing
 - □Can calculate address in 3rd stage, access memory in 4th stage

Hazards

- □ Situations that prevent starting the next instruction in the next cycle
- **■** Structure hazards
 - A required resource is busy
- □ Data hazard
 - Need to wait for previous instruction to complete its data read/write
- □ Control hazard
 - Deciding on control action depends on previous instruction

Structure Hazards

- □ Conflict for use of a resource
- □ In RISC-V pipeline with a single memory
 - Load/store requires data access
 - Instruction fetch would have to *stall* for that cycle
 - Would cause a pipeline "bubble"
- ☐ Hence, pipelined datapaths require separate instruction/data memories
 - Or separate instruction/data caches

Data Hazards

- An instruction depends on completion of data access by a previous instruction
 - add x19, x0, x1
 sub x2, x19, x3

Forwarding (aka Bypassing)

■ Use result when it is computed

- Don't wait for it to be stored in a register
- Requires extra connections in the datapath

Load-Use Data Hazard

□ Can't always avoid stalls by forwarding

- If value not computed when needed
- Can't forward backward in time!

Code Scheduling to Avoid Stalls

- Reorder code to avoid use of load result in the next instruction
- \Box C code for a = b + e; c = b + f;

Control Hazards

□Branch determines flow of control

- Fetching next instruction depends on branch outcome
- Pipeline can't always fetch correct instruction
 - ■Still working on ID stage of branch

□In RISC-V pipeline

- Need to compare registers and compute target early in the pipeline
- Add hardware to do it in ID stage

Stall on Branch

■ Wait until branch outcome determined before fetching next instruction

Branch Prediction

- □ Longer pipelines can't readily determine branch outcome early
 - Stall penalty becomes unacceptable
- □ Predict outcome of branch
 - Only stall if prediction is wrong
- **□** In RISC-V pipeline
 - Can predict branches not taken
 - Fetch instruction after branch, with no delay

More-Realistic Branch Prediction

■ Static branch prediction

- Based on typical branch behavior
- Example: loop and if-statement branches
 - □ Predict backward branches taken
 - □ Predict forward branches not taken

□ Dynamic branch prediction

- Hardware measures actual branch behavior
 - e.g., record recent history of each branch
- Assume future behavior will continue the trend
 - When wrong, stall while re-fetching, and update history

Pipeline Summary

The BIG Picture

- □ Pipelining improves performance by increasing instruction throughput
 - Executes multiple instructions in parallel
 - Each instruction has the same latency
- **Subject to hazards**
 - Structure, data, control
- □ Instruction set design affects complexity of pipeline implementation

4.6 RISC-V Pipelined Datapath

系统结构与网络安全研究所

Pipeline registers

■ Need registers between stages

■ To hold information produced in previous cycle

Pipeline Operation

- □ Cycle-by-cycle flow of instructions through the pipelined datapath
 - "Single-clock-cycle" pipeline diagram
 - ■Shows pipeline usage in a single cycle
 - □Highlight resources used
 - c.f. "multi-clock-cycle" diagram
 - □Graph of operation over time
- We'll look at "single-clock-cycle" diagrams for load & store

IF for Load, Store, ...

ld Instruction fetch

ID for Load, Store, ...

EX for Load

MEM for Load

WB for Load

Corrected Datapath for Load

EX for Store

MEM for Store

WB for Store

Multi-Cycle Pipeline Diagram

□ Form showing resource usage

Multi-Cycle Pipeline Diagram

□ Traditional form

Program execution order (in instructions)

ld x10, 40(x1)

sub x11, x2, x3

add x12, x3, x4

ld x13, 48(x1)

add x14, x5, x6

Instruction fetch	Instruction decode	Execution	Data access	Write-back				
	Instruction fetch	Instruction decode	Execution	Data access	Write-back			
,		Instruction fetch	Instruction decode	Execution	Data access	Write-back		
			Instruction fetch	Instruction decode	Execution	Data access	Write-back	
				Instruction fetch	Instruction decode	Execution	Data access	Write-back

Single-Cycle Pipeline Diagram

□ State of pipeline in a given cycle

add x14, x5, x6	ld x13, 48(x1)	add x12, x3, x4	sub x11, x2, x3	ld x10, 40(x1)	
Instruction fetch	Instruction decode	Execution	Memory	Write-back	

Pipelined Control (Simplified)

Pipelined Control

□ Control signals derived from instruction

As in single-cycle implementation

Pipelined Control

4.7 Data Hazards

□ Consider this sequence:

```
sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)
```

■ We can resolve hazards with forwarding

■ How do we detect when to forward?

Dependencies & Forwarding

Program execution order

Detecting the Need to Forward

□ Pass register numbers along pipeline

- e.g., ID/EX.RegisterRs1 = register number for Rs1 sitting in ID/EX pipeline register
- ALU operand register numbers in EX stage are given by
 - ID/EX.RegisterRs1, ID/EX.RegisterRs2

□ Data hazards when

- 1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1
- 1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2
- 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
- 2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

Fwd from EX/MEM pipeline reg

Fwd from MEM/WB pipeline reg

Detecting the Need to Forward

- But only if forwarding instruction will write to a register!
 - EX/MEM.RegWrite, MEM/WB.RegWrite

- □ And only if Rd for that instruction is not x0
 - EX/MEM.RegisterRd ≠ 0,MEM/WB.RegisterRd ≠ 0

Forwarding Paths

Forwarding Conditions

Mux control	Source	Explanation
ForwardA = 00	ID/EX	The first ALU operand comes from the register file.
ForwardA = 10	EX/MEM	The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01	MEM/WB	The first ALU operand is forwarded from data memory or an earlier ALU result.
ForwardB = 00	ID/EX	The second ALU operand comes from the register file.
ForwardB = 10	EX/MEM	The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01	MEM/WB	The second ALU operand is forwarded from data memory or an earlier ALU result.

Double Data Hazard

□ Consider the sequence:

```
add x1,x1,x2
add x1,x1,x3
add x1,x1,x4
```

□ Both hazards occur

■ Want to use the most recent

■ Revise MEM hazard condition

Only fwd if EX hazard condition isn't true

Revised Forwarding Condition

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs1)) and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs2)) and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01

Datapath with Forwarding

Load-Use Hazard Detection

- □ Check when using instruction is decoded in ID stage
- □ ALU operand register numbers in ID stage are given by
 - IF/ID.RegisterRs1, IF/ID.RegisterRs2
- **■** Load-use hazard when
 - ID/EX.MemRead and ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or (ID/EX.RegisterRd = IF/ID.RegisterRs2))
- ☐ If detected, stall and insert bubble

How to Stall the Pipeline

- □ Force control values in ID/EX register to 0
 - EX, MEM and WB do nop (no-operation)
- □ Prevent update of PC and IF/ID register
 - Using instruction is decoded again
 - Following instruction is fetched again
 - 1-cycle stall allows MEM to read data for 1d
 - □ Can subsequently forward to EX stage

Load-Use Data Hazard

Program execution order (in instructions)

Datapath with Hazard Detection

Stalls and Performance

The BIG Picture

- **Stalls reduce performance**
 - But are required to get correct results
- □ Compiler can arrange code to avoid hazards and stalls
 - Requires knowledge of the pipeline structure

4.8 Branch Hazards

☐ If branch outcome determined in MEM

Reducing Branch Delay

- **■** Move hardware to determine outcome to ID stage
 - Target address adder
 - Register comparator
- **■** Example: branch taken

```
36: sub x10, x4, x8
40: beq x1, x3, 32 // PC-relative branch
// to 40+32=72

44: and x12, x2, x5
48: orr x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7

72: ld x4, 50(x7)
```


	miniculate			
	Branch if equal	beq x5, x6, 100	if (x5 == x6) go to PC+100	PC-relative branch if registers equal
	Branch if not equal	bne x5, x6, 100	if (x5 != x6) go to PC+100	PC-relative branch if registers not equal
Conditional branch	Branch if less than	blt x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less
	Branch if greater or equal	bge x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal
	Branch if less, unsigned	bltu x5, x6, 100	if (x5 < x6) go to PC+100	PC-relative branch if registers less
	Branch if greatr/eq, unsigned	bgeu x5, x6, 100	if (x5 >= x6) go to PC+100	PC-relative branch if registers greater or equal
Uncondit- ional branch	Jump and link	jal x1, 100	x1 = PC+4; go to PC+100	PC-relative procedure call
	Jump and link register	jalr x1, 100(x5)	x1 = PC+4; go to x5+100	Procedure return; indirect call

Example: Branch Taken

Example: Branch Taken

Dynamic Branch Prediction

- In deeper and superscalar pipelines, branch penalty is more significant
- **□** Use dynamic prediction
 - Branch prediction buffer (aka branch history table)
 - Indexed by recent branch instruction addresses (lower part)
 - Stores outcome (taken/not taken)
 - To execute a branch
 - □ Check table, expect the same outcome
 - Start fetching from fall-through or target
 - If wrong, flush pipeline and flip prediction

1-Bit Predictor: Shortcoming

□ Inner loop branches mispredicted twice!

```
outer: ...
inner: ...
beq ..., ..., inner
...
beq ..., ..., outer
```

- Mispredict as taken on last iteration of inner loop
- Then mispredict as not taken on first iteration of inner loop next time around

2-Bit Predictor

□ Only change prediction on two successive mispredictions

Calculating the Branch Target

- Even with predictor, still need to calculate the target address
 - 1-cycle penalty for a taken branch
- **□** Branch target buffer
 - Cache of target addresses
 - Indexed by PC when instruction fetched
 - □ If hit and instruction is branch predicted taken, can fetch target immediately

4.9 Exceptions and Interrupts

- □ "Unexpected" events requiring change in flow of control
 - Different ISAs use the terms differently
- **■** Exception
 - Arises within the CPU
 - e.g., undefined opcode, syscall, hardware malfunction ...
- **□** Interrupt
 - From an external I/O controller
- □ Dealing with them without sacrificing performance is hard

Handling Exceptions

- **Save PC of offending (or interrupted)** instruction
 - In RISC-V: Supervisor Exception Program Counter (SEPC)
- **■** Save indication of the problem
 - In RISC-V: Supervisor Exception Cause Register (SCAUSE)
 - 64 bits, but most bits unused
 - Exception code field: 2 for undefined opcode, 12 for hardware malfunction, ...
- **□** Jump to handler
 - Assume at 0000 0000 1C09 0000_{hex}

An Alternate Mechanism

□ Vectored Interrupts

Handler address determined by the cause

■ Exception vector address to be added to a vector table base register:

■ Undefined opcode 00 0100 0000_{two}

■ Hardware malfunction: 01 1000 0000_{two}

...

■ Instructions either

- Deal with the interrupt, or
- Jump to real handler

Handler Actions

- Read cause, and transfer to relevant handler
- **□** Determine action required
- **□** If restartable
 - Take corrective action
 - use SEPC to return to program
- **□** Otherwise
 - Terminate program
 - Report error using SEPC, SCAUSE, ...

Exceptions in a Pipeline

- □ Another form of control hazard
- □ Consider malfunction on add in EX stage add x1, x2, x1
 - Prevent x1 from being clobbered
 - Complete previous instructions
 - Flush add and subsequent instructions
 - Set SEPC and SCAUSE register values
 - Transfer control to handler
- **Similar to mispredicted branch**
 - Use much of the same hardware

Pipeline with Exceptions

Exception Properties

□ Restartable exceptions

- Pipeline can flush the instruction
- Handler executes, then returns to the instruction
 - □ Refetched and executed from scratch

□ PC saved in SEPC register

Identifies causing instruction

Exception Example

■ Exception on add in

```
40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
```

...

□ Handler

```
1c090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
```

...

Exception Example

Exception Example

Multiple Exceptions

- **□** Pipelining overlaps multiple instructions
 - Could have multiple exceptions at once
- □ Simple approach: deal with exception from earliest instruction
 - Flush subsequent instructions
 - "Precise" exceptions
- **□** In complex pipelines
 - Multiple instructions issued per cycle
 - Out-of-order completion
 - Maintaining precise exceptions is difficult!

Imprecise Exceptions

- **□** Just stop pipeline and save state
 - Including exception cause(s)
- □ Let the handler work out
 - Which instruction(s) had exceptions
 - Which to complete or flush
 - May require "manual" completion
- □ Simplifies hardware, but more complex handler software
- **■** Not feasible for complex multiple-issue out-of-order pipelines

4.10 Instruction-Level Parallelism (ILP)

- □ Pipelining: executing multiple instructions in parallel
- **□** To increase ILP
 - Deeper pipeline
 - □ Less work per stage ⇒ shorter clock cycle
 - Multiple issue
 - \blacksquare Replicate pipeline stages \Rightarrow multiple pipelines
 - Start multiple instructions per clock cycle
 - □ CPI < 1, so use Instructions Per Cycle (IPC)
 - E.g., 4GHz 4-way multiple-issue
 - 16 BIPS, peak CPI = 0.25, peak IPC = 4
 - But dependencies reduce this in practice

Multiple Issue

□ Static multiple issue

- Compiler groups instructions to be issued together
- Packages them into "issue slots"
- Compiler detects and avoids hazards

□ Dynamic multiple issue

- CPU examines instruction stream and chooses instructions to issue each cycle
- Compiler can help by reordering instructions
- CPU resolves hazards using advanced techniques at runtime

Speculation

- "Guess" what to do with an instruction
 - Start operation as soon as possible
 - Check whether guess was right
 - If so, complete the operation
 - If not, roll-back and do the right thing
- □ Common to static and dynamic multiple issue
- **■** Examples
 - Speculate on branch outcome
 - Roll back if path taken is different
 - Speculate on load
- Roll back if location is updated

Compiler/Hardware Speculation

□ Compiler can reorder instructions

- e.g., move load before branch
- Can include "fix-up" instructions to recover from incorrect guess

☐ Hardware can look ahead for instructions to execute

- Buffer results until it determines they are actually needed
- Flush buffers on incorrect speculation

Speculation and Exceptions

- What if exception occurs on a speculatively executed instruction?
 - e.g., speculative load before null-pointer check
- **■** Static speculation
 - Can add ISA support for deferring exceptions
- **□** Dynamic speculation
 - Can buffer exceptions until instruction completion (which may not occur)

Static Multiple Issue

- □ Compiler groups instructions into "issue packets"
 - Group of instructions that can be issued on a single cycle
 - Determined by pipeline resources required
- □ Think of an issue packet as a very long instruction
 - Specifies multiple concurrent operations
 - ⇒ Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue

- **□** Compiler must remove some/all hazards
 - Reorder instructions into issue packets
 - No dependencies with a packet
 - Possibly some dependencies between packets
 - □ Varies between ISAs; compiler must know!
 - Pad with nop if necessary

RISC-V with Static Dual Issue

□ Two-issue packets

- One ALU/branch instruction
- One load/store instruction
- 64-bit aligned
 - □ ALU/branch, then load/store
 - □ Pad an unused instruction with nop

Address	Instruction type	Pipeline Stages						
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store			IF	ID	EX	MEM	WB

RISC-V with Static Dual Issue

Hazards in the Dual-Issue RISC-V

- **■** More instructions executing in parallel
- **■** EX data hazard
 - Forwarding avoided stalls with single-issue
 - Now can't use ALU result in load/store in same packet
 - □ add x10, x0, x1 1d x2, 0(x10)
 - □ Split into two packets, effectively a stall
- **□** Load-use hazard
 - Still one cycle use latency, but now two instructions
- **■** More aggressive scheduling required

Scheduling Example

■ Schedule this for dual-issue RISC-V

```
Loop: ld x31,0(x20) // x31=array element add x31,x31,x21 // add scalar in x21 sd x31,0(x20) // store result addi x20,x20,-8 // decrement pointer blt x22,x20,Loop // branch if x22 < x20
```

	ALU/branch	Load/store	cycle
Loop:	nop	ld x31,0(x20)	1
	addi x20,x20,-8	nop	2
	add x31,x31,x21	nop	3
	blt x22,x20,Loop	sd x31,8(x20)	4

■ IPC =
$$5/4 = 1.25$$
 (c.f. peak IPC = 2)

Loop Unrolling

- □ Replicate loop body to expose more parallelism
 - Reduces loop-control overhead
- **■** Use different registers per replication
 - Called "register renaming"
 - Avoid loop-carried "anti-dependencies"
 - Store followed by a load of the same register
 - Aka "name dependence"
 - Reuse of a register name

Loop Unrolling Example

	ALU/branch	Load/store	cycle
Loop:	addi x20,x20,-32	ld x28, 0(x20)	1
	nop	1d x29, 24(x20)	2
	add x28,x28,x21	ld x30, 16(x20)	3
	add x29,x29,x21	ld x31, 8(x20)	4
	add x30,x30,x21	sd x28, 32(x20)	5
	add x31,x31,x21	sd x29, 24(x20)	6
	nop	sd x30, 16(x20)	7
	blt x22,x20,Loop	sd x31, 8(x20)	8

IPC = 14/8 = 1.75

Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

- "Superscalar" processors
- □ CPU decides whether to issue 0, 1, 2, ... each cycle
 - Avoiding structural and data hazards
- Avoids the need for compiler scheduling
 - Though it may still help
 - Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

- Allow the CPU to execute instructions out of order to avoid stalls
 - But commit result to registers in order

■ Example

```
ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20
```

Can start sub while add is waiting for ld

Dynamically Scheduled CPU

Register Renaming

- Reservation stations and reorder buffer effectively provide register renaming
- **□** On instruction issue to reservation station
 - If operand is available in register file or reorder buffer
 - □ Copied to reservation station
 - No longer required in the register; can be overwritten
 - If operand is not yet available
 - It will be provided to the reservation station by a function unit
 - Register update may not be required

Speculation

□ Predict branch and continue issuing

Don't commit until branch outcome determined

□ Load speculation

- Avoid load and cache miss delay
 - □ Predict the effective address
 - □ Predict loaded value
 - Load before completing outstanding stores
 - Bypass stored values to load unit
- Don't commit load until speculation cleared

Why Do Dynamic Scheduling?

- **Why not just let the compiler schedule code?**
- **■** Not all stalls are predicable
 - e.g., cache misses
- □ Can't always schedule around branches
 - Branch outcome is dynamically determined
- □ Different implementations of an ISA have different latencies and hazards

Does Multiple Issue Work?

The BIG Picture

- ☐ Yes, but not as much as we'd like
- □ Programs have real dependencies that limit ILP
- **□** Some dependencies are hard to eliminate
 - e.g., pointer aliasing
- **□** Some parallelism is hard to expose
 - Limited window size during instruction issue
- **■** Memory delays and limited bandwidth
 - Hard to keep pipelines full
- **□** Speculation can help if done well

Power Efficiency

- □ Complexity of dynamic scheduling and speculations requires power
- Multiple simpler cores may be better

Microprocessor	Year	Clock Rate	Pipeline Stages	Issue width	Out-of-order/ Speculation	Cores	Power
i486	1989	25MHz	5	1	No	1	5W
Pentium	1993	66MHz	5	2	No	1	10W
Pentium Pro	1997	200MHz	10	3	Yes	1	29W
P4 Willamette	2001	2000MHz	22	3	Yes	1	75W
P4 Prescott	2004	3600MHz	31	3	Yes	1	103W
Core	2006	2930MHz	14	4	Yes	2	75W
UltraSparc III	2003	1950MHz	14	4	No	1	90W
UltraSparc T1	2005	1200MHz	6	1	No	8	70W

4.11 Cortex A53 and Intel i7

Processor	ARM A53	Intel Core i7 920	
Market	Personal Mobile Device	Server, cloud	
Thermal design power	100 milliWatts (1 core @ 1 GHz)	130 Watts	
Clock rate	1.5 GHz	2.66 GHz	
Cores/Chip	4 (configurable)	4	
Floating point?	Yes	Yes	
Multiple issue?	Dynamic	Dynamic	
Peak instructions/clock cycle	2	4	
Pipeline stages	8	14	
Pipeline schedule	Static in-order	Dynamic out-of-order with speculation	
Branch prediction	Hybrid	2-level	
1 st level caches/core	16-64 KiB I, 16-64 KiB D	32 KiB I, 32 KiB D	
2 nd level caches/core	128-2048 KiB	256 KiB (per core)	
3 rd level caches (shared)	(platform dependent)	2-8 MB	

ARM Cortex-A53 Pipeline

ARM Cortex-A53 Performance

Core i7 Pipeline

Core i7 Performance

4.12 Matrix Multiply

□ Unrolled C code

```
1 #include <x86intrin.h>
2 #define UNROLL (4)
3
4 void dgemm (int n, double* A, double* B, double* C)
5 {
   for ( int i = 0; i < n; i+=UNROLL*4 )
    for ( int j = 0; j < n; j++ ) {
     m256d c[4];
8
9
     for ( int x = 0; x < UNROLL; x++)
     c[x] = mm256 load pd(C+i+x*4+j*n);
10
11
12
     for ( int k = 0; k < n; k++ )
13
      m256d b = mm256 broadcast sd(B+k+j*n);
14
      for (int x = 0; x < UNROLL; x++)
15
      c[x] = mm256 \text{ add } pd(c[x])
16
17
                           mm256 \text{ mul pd}(mm256 \text{ load pd}(A+n*k+x*4+i), b));
18
     }
19
      for ( int x = 0; x < UNROLL; x++)
20
21
       mm256 store pd(C+i+x*4+j*n, c[x]);
22 }
23 }
```


Matrix Multiply

☐ Assembly code:

```
1 vmovapd (%r11), %ymm4
                                       # Load 4 elements of C into %ymm4
                                       # register %rax = %rbx
2 mov %rbx,%rax
3 xor %ecx, %ecx
                                       # register %ecx = 0
                                      # Load 4 elements of C into %ymm3
4 vmovapd 0x20(%r11),%ymm3
5 vmovapd 0x40(%r11),%ymm2
                                       # Load 4 elements of C into %ymm2
6 vmovapd 0x60(%r11),%ymm1
                                       # Load 4 elements of C into %ymm1
7 vbroadcastsd (%rcx,%r9,1),%ymm0
                                       # Make 4 copies of B element
8 add $0x8, %rcx # register %rcx = %rcx + 8
9 vmulpd (%rax),%ymm0,%ymm5
                                       # Parallel mul %ymm1,4 A elements
10 vaddpd %ymm5, %ymm4, %ymm4
                                       # Parallel add %ymm5, %ymm4
                                       # Parallel mul %ymm1,4 A elements
11 vmulpd 0x20(%rax),%ymm0,%ymm5
12 vaddpd %ymm5, %ymm3, %ymm3
                                       # Parallel add %ymm5, %ymm3
13 vmulpd 0x40(%rax),%ymm0,%ymm5
                                       # Parallel mul %ymm1,4 A elements
14 vmulpd 0x60(%rax), %ymm0, %ymm0
                                       # Parallel mul %ymm1,4 A elements
                                       # register %rax = %rax + %r8
15 add %r8,%rax
16 cmp %r10,%rcx
                                       # compare %r8 to %rax
17 vaddpd %ymm5,%ymm2,%ymm2
                                       # Parallel add %ymm5, %ymm2
18 vaddpd %ymm0,%ymm1,%ymm1
                                       # Parallel add %ymm0, %ymm1
19 jne 68 <dgemm+0x68>
                                       # jump if not %r8 != %rax
                                       # register % esi = % esi + 1
20 add $0x1,%esi
21 vmovapd %ymm4, (%r11)
                                       # Store %ymm4 into 4 C elements
22 vmovapd %ymm3,0x20(%r11)
                                       # Store %ymm3 into 4 C elements
23 vmovapd %ymm2,0x40(%r11)
                                       # Store %ymm2 into 4 C elements
24 vmovapd %ymm1,0x60(%r11)
                                       # Store %ymm1 into 4 C elements
```


Performance Impact

4.14 Fallacies

□ Pipelining is easy (!)

- The basic idea is easy
- The devil is in the details
 - e.g., detecting data hazards

□ Pipelining is independent of technology

- So why haven't we always done pipelining?
- More transistors make more advanced techniques feasible
- Pipeline-related ISA design needs to take account of technology trends
 - e.g., predicated instructions

Pitfalls

□ Poor ISA design can make pipelining harder

- e.g., complex instruction sets (VAX, IA-32)
 - Significant overhead to make pipelining work
 - □ IA-32 micro-op approach
- e.g., complex addressing modes
 - Register update side effects, memory indirection
- e.g., delayed branches
 - Advanced pipelines have long delay slots

Concluding Remarks

- □ ISA influences design of datapath and control
- □ Datapath and control influence design of ISA
- □ Pipelining improves instruction throughput using parallelism
 - More instructions completed per second
 - Latency for each instruction not reduced
- □ Hazards: structural, data, control
- **■** Multiple issue and dynamic scheduling (ILP)
 - Dependencies limit achievable parallelism
 - Complexity leads to the power wall

Homework

4.1, 4.4,4.6,4.7,4.9,4.11,4.16,4.18,4.20,4.25

OEND

