
系统结构与网络安全研究所

Large and Fast:
Exploiting Memory Hierarchy

林 芃
Lin Peng

penglin@zju.edu.cn

Computer Organization & Design
The Hardware/Software Interface

计算机组成与设计

Chapter 5

系统结构与网络安全研究所

5.1 Large and Fast

Speed
Fast enough to

catch up with the speed
of the processor

(IF, MEM….)

Size
Large enough to

store any program
(Turing Completeness)

Reality: we don’t have an ideal memory…
- need a hierarchical design

系统结构与网络安全研究所

p Speed
n Physical cell property
n Access schemes

p Cost per bit (cost vs size)
n PC Memory：Samsung DDR4 8GB ￥245 ￥30/GB
n SSD： Samsung T7 1TB ￥829 ￥0.83/GB
n Hard drive： Seagate 4TB ￥759 ￥0.19/GB

p Volatility

p Endurance cycles
n Controller design

5.1 Key Merits of a Memory

(Source: 2022 from JD.com)

Memory
technology

Typical access time Cost per GB (2012)

SRAM 0.5-2.5ns $2000-$5,000

DRAM 50-70ns $20-$75

Flash 5,000ns – 50,000ns* $4 – $12 per GB

Magnetic disk 5,000,000-20,000,000ns $0.2-$2

Memory becomes cheaper, why?

系统结构与网络安全研究所

5.1 How mall is a transistor?

1m 10 cm 1cm 1mm 100 um 10 um 1um 100 nm 10 nm 1nm

芯片(cm)

封装的cpu

芯片显微镜照片(cm)

芯片局部区域
(1 – 100 um)

局部电路(侧视图)
(<1 um)
头发丝的
千分之一

晶体管
10nm
头发丝的
万分之一

集成电路工艺的发展

芯片晶体管密度增加

功能更强大，存储容量更大，成本更低

系统结构与网络安全研究所

源极
漏极

栅极

（Input）
（Output）

（Control）

P型半导体硅

N型半导体硅 N型半导体硅

介电层（绝缘体）

金属电极

Back-to-back PN, no current! Switch off!

Ø 半导体：性质介于金属与绝缘体之间，通过加电场可以改变其性质
Ø P型半导体（电子密度比正常水平小），N型半导体（电子密度大）

5.1 Transistor

系统结构与网络安全研究所

源极
漏极

栅极

（Input）
（Output）

（Control）

P型半导体硅

N型半导体硅 N型半导体硅

介电层（绝缘体）

金属电极

0

1

Back-to-back PN, no current! Switch off!

PN结

Vpn

Ipn

电流只能从P流向N

Ø 半导体：性质介于金属与绝缘体之间，通过加电场可以改变其性质
Ø P型半导体（电子密度比正常水平小），N型半导体（电子密度大）

5.1 Transistor

系统结构与网络安全研究所

源极
漏极

栅极

（Input）
（Output）

（Control）

P型半导体硅

N型半导体硅 N型半导体硅

介电层（绝缘体）

金属电极

1

1

Locally at interface, P-type becomes N-type, switch ON!

反向层

电场
吸引电子

消除PN结

Vpn

Ipn

晶体管导通

Ø 半导体：性质介于金属与绝缘体之间，通过加电场可以改变其性质
Ø P型半导体（电子密度比正常水平小），N型半导体（电子密度大）

5.1 Transistor

系统结构与网络安全研究所

pMemories: Review
n SRAM (Static Random Access Memory)
– value is stored on a pair of inverting gates
– very fast but takes up more space than DRAM

5.1 Memory Technologies

gate

source drain

Transistor Invertor
(CMOS)

SRAM
6 transistors

李雅茜
静态随机存储器

系统结构与网络安全研究所

Word
Line

Bit Line

C

Sense
Amp

.

.

.

pDRAM: (Dynamic Random Access Memory)
n Value is stored as a charge on capacitor
n Very small but slower than SRAM (factor of 5 to 10)
n Must periodically be refreshed
n Read contents and write back (destructive read)

Memories: Review

1 transistor + 1 capacitor

李雅茜
动态随机存储器

系统结构与网络安全研究所

p Bits in a DRAM are organized as a rectangular array
n DRAM accesses an entire row
n Burst mode: supply successive words from a row with reduced

latency (SDRAM)
p Double data rate (DDR) DRAM

n Transfer on rising and falling clock edges
p Quad data rate (QDR) DRAM

n Separate DDR inputs and outputs

Advanced DRAM Organization

系统结构与网络安全研究所

DRAM Developed
Year

introduced
Chip size $ per MB Total access time to

a new row/column
Columm access time

to existing row

1980 64Kbit $1500 250ns 150ns
1983 128Kbit $500 185ns 100ns
1985 1Mbit $200 135ns 40ns
1989 4Mbit $50 110ns 40ns
1992 16Mbit $15 90ns 30ns
1996 64Mbit $10 60ns 12ns
1998 128Mbit $4 60ns 10ns
2000 256Mbit $1 55ns 7ns
2004 1024Mbit $0.10 45ns 3ns
2012 4G bit $0.05 35ns 0.8ns

DRAM size increased by multiples of four approximately once every three year
until 1996, and thereafter doubling approximately every two years.

系统结构与网络安全研究所

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac
Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

系统结构与网络安全研究所

pNonvolatile semiconductor storage
n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB than disk (between disk and

DRAM)

Flash Storage

李雅茜
外设的技术

用虚拟映射的方法 把flash做一个扩展

可以做成容量很大

系统结构与网络安全研究所

Flash Types
p NOR flash: bit cell like a NOR gate

n Random read/write access
n Used for instruction memory in embedded systems

p NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

p Flash bits wears out after 10000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks

gate

source drain

Flash transistor

Oxide can trap
electrons

Modify threshold
voltage

Non-volatile
memory

李雅茜
寿命不行

李雅茜
只存了100个电子

虽然叫非易失存储器

但是还是会丢

系统结构与网络安全研究所

Flash Storage

3D flash makes SSD low cost and faster!
• Low cost per bit
• SSD 10X faster than 5 years ago

• e.g. less error rate

系统结构与网络安全研究所

pNonvolatile, rotating magnetic storage

Disk Storage

head

plate

李雅茜
磁头

系统结构与网络安全研究所

Disk Sectors and Access
p Each sector records

n Sector ID
n Data (512 bytes, 4096 bytes proposed)
n Error correcting code (ECC)

p Used to hide defects and recording errors

p Access to a sector involves
n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead

系统结构与网络安全研究所

Disk Access Example
pGiven

n 512B sector, 15,000rpm, 4ms average seek time,
100MB/s transfer rate, 0.2ms controller overhead,
idle disk

pAverage read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

p If actual average seek time is 1ms
n Average read time = 3.2ms

李雅茜
半圈

系统结构与网络安全研究所

pPrograms access a small proportion of their
address space at any time

pTemporal locality
n Items accessed recently are likely to be accessed

again soon
n e.g., instructions in a loop, induction variables

pSpatial locality
n Items near those accessed recently are likely to be

accessed soon
n E.g., sequential instruction access, array data

5.2 Memory Hierarchy Introduction

系统结构与网络安全研究所

pMemory hierarchy
pStore everything on disk
pCopy recently accessed (and nearby) items

from disk to smaller DRAM memory
n Main memory

pCopy more recently accessed (and nearby)
items from DRAM to smaller SRAM memory
n Cache memory attached to CPU

Taking Advantage of Locality

系统结构与网络安全研究所

p Build a memory hierarchy

Memory Hierarchy Levels

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory
up

pe
r

Cache/SRAM

Memory/DRAM

SSD/Flash

Storage/Magnetic Disk

系统结构与网络安全研究所

p Block (aka line): unit of copying
n May be multiple words

p If accessed data is present in upper level
n Hit: access satisfied by upper level

p Hit ratio: hits/accesses

p If accessed data is absent
n Miss: block copied from lower level

p Time taken: miss penalty
p Miss ratio: misses/accesses

= 1 – hit ratio
n Then accessed data supplied from upper level

Some important items(1)

系统结构与网络安全研究所

hit: The CPU accesses the upper level and succeeds.
Miss: The CPU accesses the upper level and fails.
Hit time:

The time to access the upper level of the memory
hierarchy, which includes the time needed to determine whether
the access is a hit or a miss.

miss penalty:
The time to replace a block in the upper level with the

corresponding block from the lower level, plus the time to
deliver this block to the processor.

Some important items(2)

系统结构与网络安全研究所

The method
• Hierarchies bases on memories of different

speeds and size
• The more closely CPU the level is, the faster the one is.
• The more closely CPU the level is, the smaller the one is.
• The more closely CPU the level is, the more expensive

Exploiting Memory Hierarchy

Levels in the memory
hierarchy

Increasing distance form
the CPU in access time

Size of the memory at each level

李雅茜
L1 快 可以不管hit rate

L2 准 最后一道防线

避免需要DRAM

系统结构与网络安全研究所

1. The basics of Cache: SRAM and DRAM (main memory)
The solution is in speed

2. Virtual Memory: DRAM and DISK
The solution is in size

There has been exploited Memory Hierarchy

系统结构与网络安全研究所

Simple implementations

p Two issues:
n How do we know if a data item is in the cache?
n If it is, how do we find it?

p Our first example: "direct mapped"
n block size is one word of data

5.3 The basics of Cache

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

n For each item of data at the
lower level, there is exactly one
location in the cache where it
might be.

e.g., lots of items at the lower level
share locations in the upper level

系统结构与网络安全研究所

p Where can a block be placed in the upper level?

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101
00
0

Cache

Memory
00
1

01
0

01
1

10
0

10
1

11
0

11
1

p Direct-mapping algorithm.

Cache 8 Block

index

32 Block

(Block address) modulo (Number of blocks in the cache)

p Fortunately, while the cache has 2n blocks, the corresponding index is
equal to the lowest n bits of memory block address. Here n=3. Let’s check

李雅茜
不是内存地址

李雅茜
容易定位

但是容易产生竞争

系统结构与网络安全研究所

pHow do we know which particular block is
stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

pWhat if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0

Tags and Valid Bits

李雅茜
可以将高位存到数据里面

tag位

有一个额外的控制信号

真正的有效数字写进去后

valid bit为1

因为真正的硬盘在写入有效信息前就会有一些东西在里面

系统结构与网络安全研究所

p Memory block address is larger than cache block address

Accessing a cache---how do we find it?

Byte offsetIndexTAG

Block address MOD Numbers of Cache Block
Index V Tag Data
000 N

001 N
010 N
011 N
100 N
101 N
110 N
111 N

a. The initial state of the cache after power-on

Valid bit

系统结构与网络安全研究所

p 8-blocks, 1 word/block, direct mapped
p Access Sequence:

10110,11010,10110,11010,10000,00011,10000,10010
p Initial state

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

系统结构与网络安全研究所

pAfter Accessing 10110

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

10110,11010,10110,11010,10000,
00011,10000,10010

系统结构与网络安全研究所

pAfter Accessing 11010

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

10110,11010,10110,11010,10000,
00011,10000,10010

系统结构与网络安全研究所

pAfter Accessing 10110, 11010

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

10110,11010,10110,11010,10000,
00011,10000,10010

系统结构与网络安全研究所

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

10110,11010,10110,11010,10000,
00011,10000,10010

系统结构与网络安全研究所

pAfter accessing 10010

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss 010

10110,11010,10110,11010,10000,
00011,10000,10010

系统结构与网络安全研究所

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Direct Mapped Cache Construction

Tag bits: 32 − (n + m + 2)
2^n: cache size
m: index to reference words in block
Cache size:

2^n x (block size + tag size + valid bit)

李雅茜
代表block是一个字的block

李雅茜
index 10 bit

代表cache有1024个block

李雅茜
剩下的高位是tag

李雅茜
tag为index位数 block

李雅茜
m多少个字 2是两比特offset

系统结构与网络安全研究所

Example
p How many total bits are required for a direct-mapped cache

16KB of data and 4-word blocks, assuming a 32-bit address?

Bits in Cache

Answer
16KB=4KWord=212 words
One block=4 words = 22 words
Number of blocks (index bit) = 212 ÷ 22 = 210 blocks
Data bits of block =4×32=128 bits
Tag bits = address – index-block size =32-10–2-2 =18 bits
Valid bit = 1 bit

Total Cache size = 210 × (128+18+1)= 210×147= 147 Kbits
= 18.4KB

It is about 1.15 times as many as needed just for the data

Tag bits n m Byte Offset

Tag bitsValid Data

address

cache entry

系统结构与网络安全研究所

Answer
Where the address of the block is

75 modulo 64 =11

Mapping an Address to Multiword Cache Block

Byte address
Bytes per block

1200
16= = 75

Byte address
Bytes per block×Byte per block Byte address

Bytes per block×Byte per block+(Byte per block-1)

1200 1215

Notice!!!

Here:

First: get BLOCK Address

Then: get INDEX

Example
Consider a cache with 64 blocks and a block size of 16 bytes.
What block number does byte address 1200 map to?

(Block address) modulo (Number of cache blocks)

系统结构与网络安全研究所39

Miss Rate vs Block Size

• Larger blocks exploit spatial locality to lower miss rates
• If block is too large, the number of become small, and there will be

a great deal of competition for those block
• The miss rate actually goes up
• The miss penalty also increases (cost to load large blocks)

系统结构与网络安全研究所

p Read hits
n this is what we want!

p Read misses—two kinds of misses
n instruction cache miss
n data cache miss

p let’s see main steps taken on an instruction cache miss
n Stall the CPU, fetch block from memory, deliver to cache, restart CPU read

1. Send the original PC value (current PC-4) to the memory.
2. Instruct main memory to perform a read and wait for the memory to complete
its access. (in multiple cycles)
3. Write the cache entry, putting the data from memory in the data portion of the
entry, writing the upper bits of the address (from the ALU) into the tag field, and
turning the valid bit on.
4. Restart the instruction execution at the first step, which will refetch the
instruction again, this time finding it in the cache.

Handling Cache reads hit and Misses

系统结构与网络安全研究所

pWrite hits: Different Strategies
n write-back: Cause Inconsistent

p Wrote the data into only the data cache
p Strategy ---- write back data from the cache to memory later

Fast!
n write-through: Ensuring Consistency

p Write the data into both the memory the cache
p Strategy ---- writes always update both the cache and the memory
p Slower!----write buffer

pWrite misses:
n read the entire block into the cache, then write the word

Handling Cache Writes hit and Misses

系统结构与网络安全研究所

Caching is a general concept used in processors, operating systems, file
systems, and applications.

p Q1: Where can a block be placed in the upper level?
(Block placement)

n Fully Associative, Set Associative, Direct Mapped
p Q2: How is a block found if it is in the upper level?

(Block identification)
n Tag/Block

p Q3: Which block should be replaced on a miss?
(Block replacement)

n Random, LRU,FIFO
p Q4: What happens on a write?

(Write strategy)
n Write Back or Write Through (with Write Buffer)

Four Questions for Memory Designers

系统结构与网络安全研究所

pDirect mapped
n Block can only go in one place in the cache

Usually address MOD Number of blocks in cache
pFully associative

Block can go anywhere in cache.
pSet associative

n Block can go in one of a set of places in the cache.
n A set is a group of blocks in the cache.

Block address MOD Number of sets in the cache
n If sets have n blocks, the cache is said to be n-way set

associative.

Q1: Block Placement

•Note that direct mapped is the same as 1-way set associative, and
fully associative is m-way set-associative (for a cache with m blocks).

系统结构与网络安全研究所

Figure 8-32 Block Placement

系统结构与网络安全研究所

p Tag
n Every block has an address tag that stores the main memory

address of the data stored in the block.
n When checking the cache, the processor will compare the

requested memory address to the cache tag -- if the two are
equal, then there is a cache hit and the data is present in the
cache

p Valid bit
n Often, each cache block also has a valid bit that tells if the

contents of the cache block are valid

Q2: Block Identification

系统结构与网络安全研究所

p The Index field selects
n The set, in case of a set-associative cache
n The block, in case of a direct-mapped cache
n Has as many bits as log2(#sets) for set-associative caches, or

log2(#blocks) for direct-mapped caches
p The Byte Offset field selects

n The byte within the block
n Has as many bits as log2(size of block)

p The Tag is used to find the matching block within a set or
in the cache
n Has as many bits as

Address_size – Index_size – Byte_Offset_Size

The Format of the Physical Address

系统结构与网络安全研究所

Direct-mapped Cache Example (1-word Blocks)

系统结构与网络安全研究所

pAssume cache has 4 blocks

Fully-Associative Cache example (1-word Blocks)

系统结构与网络安全研究所

pAssume cache has 4 blocks and each block is 1 word
p2 blocks per set, hence 2 sets per cache

2-Way Set-Associative Cache

Correct?

系统结构与网络安全研究所

p In a direct-mapped cache, there is only one block that can be
replaced

p In set-associative and fully-associative caches, there are N blocks
(where N is the degree of associativity)

Q3: Block Replacement

系统结构与网络安全研究所

pSeveral different replacement policies can be used
n Random replacement - randomly pick any block

p Easy to implement in hardware, just requires a random
number generator

pSpreads allocation uniformly across cache
pMay evict a block that is about to be accessed

n Least-recently used (LRU) - pick the block in the set which
was least recently accessed

pAssumed more recently accessed blocks more likely to
be referenced again

pThis requires extra bits in the cache to keep track of
accesses.

n First in,first out(FIFO)-Choose a block from the set which
was first came into the cache

Strategy of Block Replacement

系统结构与网络安全研究所

p When data is written into the cache (on a store), is the data also
written to main memory?
n If the data is written to memory, the cache is called a write-

through cache
p Can always discard cached data - most up-to-date data is in memory
p Cache control bit: only a valid bit
p memory (or other processors) always have latest data

n If the data is NOT written to memory, the cache is called a write-
back cache

p Can’t just discard cached data - may have to write it back to memory
p Cache control bits: both valid and dirty bits
p much lower bandwidth, since data often overwritten multiple times

p Write-through adv: Read misses don't result in writes, memory hierarchy is
consistent and it is simple to implement.

p Write back adv: Writes occur at speed of cache and main memory bandwidth
is smaller when multiple writes occur to the same block.

Q4: Write Strategy

系统结构与网络安全研究所

p Write stall --When the CPU must wait for writes to complete
during write through

p Write buffers
n A small cache that can hold a few values waiting to go to

main memory.
n To avoid stalling on writes, many CPUs use a write buffer.

n This buffer helps when writes are clustered.
n It does not entirely eliminate stalls since it is possible for

the buffer to fill if the burst is larger than the buffer.

Write Stall

系统结构与网络安全研究所

Write Buffers

write
buffer

CPU

in out

DRAM
(or lower mem)

Write Buffer

系统结构与网络安全研究所

pWrite misses
n If a miss occurs on a write (the block is not present),

there are two options.
n Write allocate

pThe block is loaded into the cache on a miss
before anything else occurs.

n Write around (no write allocate)
pThe block is only written to main memory
pIt is not stored in the cache.

n In general, write-back caches use write-allocate , and
write-through caches use write-around .

Write Misses

系统结构与网络安全研究所

p Taking advantage of spatial locality to lower miss rates
with many word in the block:

Larger Blocks Exploit Spatial Locality

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex
Tag

31 16 15 4 32 1 0

系统结构与网络安全研究所

CPU

Cache

Bus

Memory

a. One-word-wide
 memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

p Make reading multiple words easier by using banks of
memory

It can get a lot more complicated...

Designing the Memory system to Support Cache

系统结构与网络安全研究所

M
em

or
y

Assume
1 clock cycles to send the address
15 memory bus clock cycles for each DRAM access

initiated
1 bus clock cycles to send a word of data
Block size is 4 words
Every word is 4 bytes

The time to transfer one word is 1+15+1=17
The miss penalty (The time to transfer one block is):

1+4×(1+15)＝65 CLKs
Bandwidth :

Performance basic memory organization

4×4
65 ≈ 1

4
Only one word is useful, and three other words may be
useless. So, for caches using four-word blocks, this
memory system is not viable.

系统结构与网络安全研究所

p With a main memory width of 2 words(64bits)
The miss penalty: 4words/Block

1+2×(15+1)＝33 CLKs

Bandwidth :

p With a main memory width of 4 words(128bits)
The miss penalty: 4words/Block

1+1×(15+1)＝17 CLKs

Bandwidth :

Performance in Wider Main Memory

4×4
33 ＝

16
33 ≈0.48

4×4
17 ＝

16
17≈0.98

only two times that needed to transfer one word.

Equal to time
to transfer one
word.

系统结构与网络安全研究所

p With 4 banks Interleaved Memory
The miss penalty: 4words/Block

1+15 +(4 × 1)＝20

Bandwidth :

Four-way interleaved memory

Performance in Four-way interleaved memory

4×4
20 ＝ 0.8

Parallel access

Optimizes sequential address access patterns

Almost equal to time
to transfer one word.

系统结构与网络安全研究所

p Increasing the block size tends to decrease miss rate:

p Use split caches because there is more spatial locality in code:

Performance in Different Block Size

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

Mi
ss

 ra
te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

系统结构与网络安全研究所

p In this section, we will discuss two questions:
1. How to measure cache performance?
2. How to improve performance?

p The main contents are the following:
1. Measuring cache performance
2. Reducing cache misses by more flexible placement of blocks
3. Reducing the miss penalty using multilevel caches

5.4 Measuring and improving cache performance

Average Memory Assess Time (AMAT) = hit time + miss time
= hit time + miss rate × miss penalty

Hit time: The time to access the upper level of the memory hierarchy, which includes the time needed to
determine whether the access is a hit or a miss.
miss penalty: The time to replace a block in the upper level with the corresponding block from the lower level,
plus the time to deliver this block to the processor.

系统结构与网络安全研究所

p We use CPU time to measure cache performance.
CPU time =

CPU execution clock cycles + Memory-stall clock cycles
Memory-stall clock cycles = # of (mem) instructions×miss ratio×miss penalty

= Read-stall cycles + Write-stall cycles
p For Read-stall

Read-stall cycles = × Read miss rate × Read miss penalty

p For a write-through plus write buffer scheme:

 Write-stall cycles= × Write miss rate × Write miss penalty

+ Write buffer stalls
p If the write buffer stalls are small, we can safely ignore them .
p If the cache block size is one word, the write miss penalty is 0.

Measuring cache performance

(# of) Read
Program

(# of) Write
Program

CPU_time = I ×CPI × Clock cycle time

系统结构与网络安全研究所

p In most write-through cache organizations, the read and write miss
penalties are the same (question?)
n the time to fetch the block from memory.

p If we neglect the write buffer stalls, we get the following equation:
Memory-stall clock cycles ＝

 × Miss rate × Miss penalty

We can also write this as:

Memory-stall clock cycles ＝

Combine the reads and writes

Memory accesses
Program

Instructions
Program

Misses
Instructions× Miss penalty×

系统结构与网络安全研究所

p Assume:
instruction cache miss rate 2%
data cache miss rate 4%
CPI without any memory stalls 2
miss penalty 100 cycles
The frequency of all loads and stores in gcc is 36%, as we

see in Figure 3.26, on page 288.
p Question: How faster a processor would run with a perfect cache?
p Answer:

Instruction miss cycles = I×2%×100 =2.00I
Data miss cycles = I×36%×4%×100 =1.44I
Total memory-stall cycles= 2.00I+ 1.44I =3.44 I
CPI with stall = CPI with perfect cache + total memory-stalls

= (2 + 3.44)I = 5.44I

Calculating Cache Performance

系统结构与网络安全研究所

p What happens if the processor is made faster?
Assume CPI reduces from 2 to 1
CPI with stall = CPI with perfect cache + total memory-stalls

=(1+3.44)I = 4.44I

How Faster a Processor for Ideal
CPU time with stalls

CPU time with perfect cache
I×CPIstall×Clock cycle
I×CPIperfect×Clock cycle

CPIstal
lCPIperfect

5.44
2

=

= =

CPU time with stalls
CPU time with perfect cache

CPIstall

CPIperfect

4.44
1

= = =4.44

=2.72

Ratio time for Memory stalls
3.44
5.44

3.44
4.44

=63% to =77%from

系统结构与网络安全研究所

p Suppose we increase the performance of the computer in the previous
example by doubling its clock rate for same memory system.

p Question : How much faster will the computer be with the faster clock to
slow clock?

p Answer
Total miss cycles per instruction = (2%×200) + 36%×(4%×200)=6.88

CPI with cache misses = 2 + 6.88 =8.88

Calculating cache performance
with Increased Clock Rate

Performance with fast clock
Performance with slow clock

Execution time with slow clock
Execution time with fast clock

IC×CPIslow clock×Clock cycle
IC×CPIfast clock×Clock cycle/2

5.44
8.88×1/2

= =1.23=

=

This, the computer with the faster clock is about 1.2 times
faster rather than 2 time faster.

系统结构与网络安全研究所

(1) The disadvantage of a direct-mapped cache

(2) The basics of a set-associative cache

(3) Miss rate versus set-associative

(4) Locating a block in the set-associative cache

(5) Size of tags versus set associative

(6) Choosing which block to replace

Solution 1
Reducing cache misses by more flexible placement of blocks

系统结构与网络安全研究所

p If the CPU requires the following memory units sequentially:
word 0,word 8 and word 0. Word 0 and word 8 both are
mapped to cache block 0, so the third access will be a miss.

p But obviously, if one memory block can be placed in any cache
block , the miss can be avoided. So, there is possibility that the
miss rate can be improved.

The disadvantage of a direct-mapped cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a c h e

M e m o r y

00
1

01
0

01
1

10
0

10
1

11
0

11
1

系统结构与网络安全研究所

p A set-associative cache
n is divided into some sets. A set contains several blocks.

p A memory block is mapped to a set in the cache
n Through a mapping algorithm.
n The memory block can be placed in any block in the corresponding set.

p The mapping algorithm is: (set with direct-mapped)
Set number (Index) =

(Memory block number) modulo (Number of sets in the cache)

The basics of a set-associative cache
Decreasing miss ratio with associativity

n If a set has only one block, this set-associative cache is actually a direct-
mapped cache.
n If a set-associative cache has only one set, this set-associative cache is called a
fully-associative cache.

系统结构与网络安全研究所

Memory block whose address is 12 in a cache
with 8 blocks for different mapped

1
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1
2

Tag

Data

Search

Fully associative

Direct mapped Set associative Fully associative

系统结构与网络安全研究所

An eight-block cache configured as variety-way

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One-way set associative
(direct mapped)

Block

0

7

1
2

3
4
5
6

Tag Data

Two-way set associative

Set

0
1

2
3

Tag Data

系统结构与网络安全研究所

Assume: there are three small caches, each consisting of four one-word blocks.
One cache is direct-mapped,
the second is two-way set associative
and the third is fully associative.

Question: Given the following sequence of block addresses:
0，8，0，6，8, find the number of misses for each cache organization.

Answer: for direct-mapped5 misses

Miss rate versus set-associativity—8Blocks

Memory
block

Hit or
miss

Contents after each reference
Set 0 Set 1 Set 2 Set 3

Block 0 Block 1 Block 2 Block 3
0 Miss M[0]
8 Miss M[8]
0 Miss M[0]
6 Miss M[0] M[6]
8 Miss M[8] M[6]

系统结构与网络安全研究所

Second, for the two-way set associative cache. 4 misses
Memory

block
Hit or
miss

Contents after each reference
Set 0 Set 1

Block 0 Block 1 Block 2 Block 3
0 Miss M[0]
8 Miss M[0] M[8]
0 Hit M[0] M[8]
6 Miss M[0] M[6]
8 Miss M[8] M[6]

Memory
block

Hit or
miss

Contents after each reference
Only one set

Block 0 Block 1 Block 2 Block 3
0 Miss M[0]
8 Miss M[0] M[8]
0 Hit M[0] M[8]
6 Miss M[0] M[8] M[6]
8 Hit M[0] M[8] M[6]

Finally, for the fully associative cache. 3 misses

系统结构与网络安全研究所

The data cache miss rates for organization like the Intrinsuty
FastMATH processor for SPEC2000 benchmarks with
associativity varying form one-way to eight-way .

p Data cache organization is 64KB data cache and 16-word block

How much of a reduction in the miss rate is achieved by
associativity?

Associativity Data miss rate
1 10.3%
2 8.6%
4 8.3%
8 8.1%

系统结构与网络安全研究所

p The implementation of a four-way set-associative cache
requires four comparators and a 4-to-1 multiplexor.

Locating a block in the set-associative cache
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

系统结构与网络安全研究所

Assume
Cache size is 4K Block
Block size is 4 words
Physical address is 32bits

Question
Find the total number of set and total number of tag bits for variety
associativity

Answer
Offset size (Byte) = 16= 24 4 bits for address

Number of memory block = 232÷24=228 28 bits for Block address
Number of cache block = 212 12 bits for Block address

For direct-mapped
Bits of index = 12 bits
bits of Tag = (28-12) ×4K=16×4K=64 Kbits

Size of tags versus set associativity

系统结构与网络安全研究所

For two-way associative
Number of cache set = 212 ÷ 2= 211

Bits of index = 12-1=11 bits
Bits of Tag = (28-11) ×2×2K=17×2×2K=68 Kbits

For four-way associative
Number of cache set = 212 ÷ 4= 210

Bits of index = 12-2=10 bits
Bits of Tag = (28-10) ×4×1K=18×4×1K=72 Kbits

For full associative
Number of cache set = 212 ÷ 212 = 20

Bits of index = 12-12=0 bits
Bits of Tag = (28-0) ×4K×1=112 Kbits

Direct 2-way 4-way Fully
Index(bit) 12 11 10 0
Tag(bit) 16 17 18 28

系统结构与网络安全研究所

p In an associative cache, we must decide which block to replace
when a miss happens and the corresponding set is full.

p The most commonly used scheme is least recently used (LRU),
which we used in the previous example. In an LRU scheme, the
block replaced is the one that has been unused for the longest
time.

p For a two-way set associative cache, the LRU can be
implemented easily. We could keep a single bit in each set. We
set the bit whenever a specific block in the set is referenced,
and reset the bit whenever another block is referenced.

p As associativity increases, implementing LRU gets harder.

Choosing which block to replace

系统结构与网络安全研究所

p Add a second level cache:
n often primary cache is on the same chip as the processor
n use SRAMs to add another cache above primary memory (DRAM)
n miss penalty goes down if data is in 2nd level cache

p Example:
n CPI of 1.0 on a 5GHz machine with a 2% miss rate, 100ns DRAM access
n Adding 2nd level cache with 5ns access time decreases miss rate to 0.5%

p Miss penalty to main memory is:

p The CPI with one level of caching
Total CPI = 1.0 + Memory-stall cycles per instruction

= 1.0 + 2% × 500 = 11.0
Miss penalty with levels of cache without access main memory

Decreasing miss penalty with multilevel caches

100ns
0.2

= 500 clock cycles

5ns
0.2

= 25 clock cycles

系统结构与网络安全研究所

p The CPI with Two level of cache with 0.5% miss rate for main memory

Total CPI = 1.0 + Primary stalls per instruction + Secondary stalls per
instruction

= 1 + 2% ×25 + 0.5% × 500
= 1.0 + 0. 5 +2.5 = 4.0

p The processor with secondary cache is faster by

p Using multilevel caches:
n try and optimize the hit time on the 1st level cache
n try and optimize the miss rate on the 2nd level cache

11.0
4.0

= 2.8

系统结构与网络安全研究所

Miss Penalties (Include Write-back Cache)

Read Miss

Fetch Memory (Block) Write Memory (Dirty) +
Fetch Memory (Block)

Write Miss

Write Memory (Block) Fetch Memory (Block) Write Memory (Dirty) +
Fetch Memory (Block)

Yes Yes

Yes
No No

No

Save dirty
block first

Write-back Cache
& Dirty?

Write-back Cache
& Dirty?

Write Allocate?

Write
Around

Need to
write to cache

Need to fetch data
from memory to cache

Save dirty
block first

Ø If the write buffer stalls are small, we can safely ignore them. (No penalty on Write Memory)
Ø If the cache block size is one word, the write miss penalty is 0. (Except the block is dirty)

系统结构与网络安全研究所

pMain Memory act as a “Cache” for the
secondary storage.

pMotivation:
n Efficient and safe sharing of memory among

multiple programs.
n Remove the programming burdens of a small,

limited amount of main memory.
pTranslation of a program’s address space to

physical address

5.7 Virtual Memory

系统结构与网络安全研究所

p Main memory can act as a cache for the secondary storage (disk)

p

p Advantages:
n illusion of having more physical memory
n program relocation
n protection

5.7 Virtual Memory

Physical addresses

Disk addresses

Virtual addresses
Address translation

Virtual addr. Physical addr.

系统结构与网络安全研究所

p Larger number of virtual pages than physical pages (Really now?)
p Page faults: the data is not in memory, retrieve it from disk

n huge miss penalty, thus pages should be fairly large (e.g., 4KB)
n reducing page faults is important (LRU is worth the price)
n can handle the faults in software instead of hardware
n using write-through is too expensive so we use write back

Pages: virtual memory blocks

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

系统结构与网络安全研究所

Page Tables
1.Page Table : Virtual to physical address
2. Stored into the memory, indexed by the virtual page number
3. Each Entry in the table contains the physical page number for that virtual pages if
the page is current in memory
4. Page table, Program counter and the page table register, specifies the state of the
program. Each process has one page table. (Process switch?)

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

virtual page

系统结构与网络安全研究所

Placing a page and finding it again --Page Tables

Each program has its own page table
Virtual memory systems use fully associative mapping method

P a g e o f f s e tV i r t u a l p a g e n u m b e r

V i r t u a l a d d r e s s

P a g e o f f s e tP h y s i c a l p a g e n u m b e r

P h y s i c a l a d d r e s s

P h y s i c a l p a g e n u m b e rV a l i d

I f 0 t h e n p a g e i s n o t
p r e s e n t i n m e m o r y

P a g e t a b l e r e g i s t e r

P a g e t a b l e

2 0 1 2

1 8

3 1 3 0 2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

2 9 2 8 2 7 1 5 1 4 1 3 1 2 1 1 1 0 9 8 3 2 1 0

系统结构与网络安全研究所

p When the OS creates a process, it usually creates the space
on disk for all the pages of a process.

Page Faults

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or
disk address

• When a page fault occurs,
the OS will be given control
through exception
mechanism.

• The OS will find the page in
the disk by the page table.

• Next, the OS will bring the
requested page into main
memory. If all the pages in
main memory are in use, the
OS will use LRU strategy to
choose a page to replace

Virtual page

系统结构与网络安全研究所

Assume:
n Virtual address is 32 bits
n page size is 4KB
n Entry size is 4 Bytes

Number of page table entries＝ ＝220

Size of page table =220 page table entries ×22 =4MB

p Five techniques is used to reduce page table size
n P428

How Large Page Table?

232
212

bytes
page table entry

系统结构与网络安全研究所

p Because disk accesses are too slow, virtual memory systems can
not use write-through strategy.

p Instead, they must use write-back strategy. To do so, the machines
need add a dirty bit to the entry of page table.

p The dirty bit is set when a page is first written. If the dirty bit of a
page is set, the page must be written back to disk before being

replaced.

What about writes?

系统结构与网络安全研究所

p The TLB (Translation-lookaside Buffer) acts as Cache on the page table
p A cache for address translations: translation look aside buffer

Making Address Translation Fast--TLB

系统结构与网络安全研究所

FastMATH Memory Hierarchy

系统结构与网络安全研究所

TLBs and Caches

Yes

Deliver data
to the CPU

Write?

Try to read data
from cache

Write data into cache,
update the tag, and put

the data and the address
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss
exception

No

YesNo

YesNo

Write access
bit on?

YesNo

Write protection
exception

Physical address

系统结构与网络安全研究所

pThree different types of misses: TLB miss,
page Fault, cache miss

Possible Combinations of Event

系统结构与网络安全研究所

Protection in the virtual memory System

系统结构与网络安全研究所

pVery complicated memory systems:

Modern Systems

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

系统结构与网络安全研究所

p Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

p Design challenge: dealing with this growing disparity

p Trends:
n synchronous SDRAMs (provide a burst of data)
n redesign DRAM chips to provide higher bandwidth or

processing
n restructure code to increase locality
n use prefetching (make cache visible to ISA)

Some Issues

系统结构与网络安全研究所

Intel Core微架构

系统结构与网络安全研究所

0xFFFFFFFF

0xC0000000

Kernel Space
Mapped Uncached(MMU)

(1GB)

0xBFFFFFFF

0xA0000000

Kernel Space(512MB)
Unmapped Uncached

0x9FFFFFFF

0x80000000

Kernel Space(512MB)
Unmapped cached

0x7FFFFFFF

0x00000000

User Space(MMU)
(2GB)

MIPS MMU

0x1FFFFFFF

0x00000000

系统结构与网络安全研究所

p5.3, 5.4, 5.5, 5.6, 5.10, 5.11, 5.16, 5.17, 5.20

Homework

系统结构与网络安全研究所

¤END

