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5.1 Large and Fast

Size Speed
Large enough to Fast enough to
store any program catch up with the speed
(Turing Completeness) of the processor
(IF, MEM....)

Reality: we don’t have an ideal memory...
- need a hierarchical design
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5.1 Key Merits of a Memory

O Speed
= Physical cell property

m Access schemes

O Cost per bit (cost vs size)

= PC Memory: Samsung DDR4 8GB ¥245 Y 30/GB
= SSD: Samsung T7 1TB ¥ 829 Y 0.83/GB
= Hard drive:  Seagate 4TB ¥759 YO0.19/GB

(Source: 2022 from JD.com)

O Volatility : :
Memory Typical access time Cost per GB (2012)
technology
= Endurance cycles SRAM 0.5-2.5ns $2000-$5,000
= Controller design DRAM 50-70ns $20-$75
Flash 5,000ns — 50,000ns* $4 — $12 per GB
Magnetic disk 5,000,000-20,000,000ns $0.2-$2

Memory becomes cheaper, why?
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5.1 How mall is a transistor?
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5.1 Transistor
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Back-to-back PN, no current! Switch off!
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5.1 Transistor
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5.1 Transistor

> R R T e R SAGAR I, @] PSR A R
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Locally at interface, P-type becomes N-type, switch ON!
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5.1 Memory Technologies

O Memories: Review
B SRAM (Static Random Access Memory)

— value is stored on a pair of inverting gates
— very fast but takes up more space than DRAM
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李雅茜
静态随机存储器


Memories: Review
ODRAM: (Dynamic Random Access Memory)

m Value is stored as a charge on capacitor
= Very small but slower than SRAM (factor of 5 to 10)

m Must periodically be refreshed
= Read contents and write back (destructive read)

1 transistor + 1 capacitor

Word
J_ Line
T 1
cT
o Bit Line

Sense
Amp
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李雅茜
动态随机存储器


Advanced DRAM Organization

O Bits in a DRAM are organized as a rectangular array

m DRAM accesses an entire row

= Burst mode: supply successive words from a row with reduced
latency (SDRAM)

O Double data rate (DDR) DRAM

= Transfer on rising and falling clock edges

O Quad data rate (QDR) DRAM
m Separate DDR 1nputs and outputs

Rd/Wr
) Act

Pre | —

Bank |
Column l

& S
ians?  ZHEJIANG UNIVERSITY
L ROW



DRAM Developed

Year Chip size $ per MB Total access time to Columm access time
introduced a new row/column to existing row

1980 64Kbit $1500 250ns 150ns
1983 128Kbit $500 185ns 100ns
1985 IMbit $200 135ns 40ns
1989 4Mbit $50 110ns 40ns
1992 16 Mbit $15 90ns 30ns
1996 64Mbit $10 60ns 12ns
1998 128 Mbit $4 60ns 10ns
2000 256Mbit $1 55ns /ns
2004 1024Mbit | $0.10 45ns 3ns

2012 4G bit $0.05 35ns 0.8ns

DRAM size increased by multiples of four approximately once every three year
until 1996, and thereafter doubling approximately every two years.
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DRAM Generations

Year | Capacity | $/GB
1980 | 64Kbit $1500000
1983 | 256Kbit | $500000
1985 | 1Mbit $200000
1989 | 4Mbit $50000
1992 | 16Mbit | $15000
1996 | 64Mbit | $10000
1998 | 128Mbit | $4000
2000 | 256Mbit | $1000
2004 | 512Mbit | $250
2007 | 1Gbit $50

300

250

200

150 -

——Trac

\\ -=—Tcac

100

50

‘80 '83 "85 '89 '92 '96 '98 '00 '04 '07
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Flash Storage

O Nonvolatile semiconductor storage
m 100x — 1000x faster than disk flash
= Smaller, lower power, more robust

= But more $/GB than disk (between disk and
DRAM)
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李雅茜
外设的技术

用虚拟映射的方法 把flash做一个扩展

可以做成容量很大


Flash Types

O NOR flash: bit cell like a NOR gate Flash transistor

m Random read/write access gate

1

m Used for mnstruction memory in embedded systems 7T
source  drain

O NAND flash: bit cell like a NAND gate ou
= Denser (bits/area), but block-at-a-time access _I_%%/
= Cheaper per GB o '\
= Used for USB keys, media storage, ... \

Oxide can trap

O Flash bits wears out after 10000°s of accesses  electrons

. . . l
= Not suitable for direct RAM or disk replacement Modify threshold
m Wear leveling: remap data to less used blocks voltage
Non-volatile
memory

) 2k f RREHESMER SRR
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李雅茜
寿命不行

李雅茜
只存了100个电子

虽然叫非易失存储器

但是还是会丢


Flash Storage
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Close-up image of V-NAND flash array

3D flash makes SSD low cost and faster! . |

« Low cost per bit —F

« SSD 10X faster than 5 years ago i o
* e.g. less error rate
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Disk Storage

O Nonvolatile, rotating magnetic storage

cylinder

plate
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李雅茜
磁头


Disk Sectors and Access

O Each sector records
= Sector ID
= Data (512 bytes, 4096 bytes proposed)
m Error correcting code (ECC)
0 Used to hide defects and recording errors

O Access to a sector involves

= Queuing delay if other accesses are pending
®= Seek: move the heads

= Rotational latency
m Data transfer
m Controller overhead

RREHESMER SRR




Disk Access Example

O Given

m 512B sector, 15,000rpm, 4ms average seek time,
100MB/s transfer rate, 0.2ms controller overhead,

idle disk
O Average read time

® 4ms seek time
+ 12/ (15,000/60) = 2ms rotational latency

+ 512/ 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

O If actual average seek time is 1ms
m Average read time = 3.2ms
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5.2 Memory Hierarchy Introduction

O Programs access a small proportion of their
address space at any time

O Temporal locality

= [tems accessed recently are likely to be accessed
again soon

® ¢.g., Instructions 1n a loop, induction variables

O Spatial locality

m Items near those accessed recently are likely to be
accessed soon

m E.g., sequential instruction access, array data
REGSHENELZLATFR




Taking Advantage of Locality

O Memory hierarchy
O Store everything on disk

O Copy recently accessed (and nearby) items
from disk to smaller DRAM memory

= Main memory

O Copy more recently accessed (and nearby)
items from DRAM to smaller SRAM memory

m Cache memory attached to CPU

) 2k BRI SMER LW
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Memory Hierarchy Levels

O Build a memory hierarchy

Speed . | CPU ."'°-..Size Cost ($/bit) Cache/SRAM
o . S
o . qa
o
: R =
Fastest Memory Smallest ,  Highest Memory/DRAM
Memory | SSD/Flash
Slowest Memory Biggest Lowest Storage/Magnetic Disk
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Some important items(1)

O Block (aka line): unit of copying

Processor

\

Data is transferred

A D

I O

= May be multiple words
If accessed data is present in upper level

m Hit: access satisfied by upper level
O Hit ratio: hits/accesses
If accessed data is absent

m Miss: block copied from lower level
O Time taken: miss penalty

O Miss ratio: misses/accesses
= ] — hit ratio

= Then accessed data supplied from upper level

RREHESMER SRR



Some important items(2)

hit: The CPU accesses the upper level and succeeds.
Miss: The CPU accesses the upper level and fails.
Hit time:

The time to access the upper level of the memory
hierarchy, which includes the time needed to determine whether

the access 1s a hit or a miss.

miss penalty:
The time to replace a block 1n the upper level with the

corresponding block from the lower level, plus the time to
deliver this block to the processor.

RIREHEMER ST




Exploiting Memory Hierarchy

The method
- Hierarchies bases on memories of different

speeds and size
 The more closely CPU the level is, the faster the one is.
 The more closely CPU the level is, the smaller the one is.
 The more closely CPU the level is, the more expensive

Smaller -
Registers Increasing distance form

Levels in the memory L1- Cache the CPU 1n access time
hierarchy (On-Chip) N

/" L2-Cache (SRAM) \ o

Main Memory DRAM) N\,
Disk ,Tape, ect. \

»

Size of the memory at each level IRLE R L TRTSER



李雅茜
L1 快 可以不管hit rate

L2 准 最后一道防线

避免需要DRAM


There has been exploited Memory Hierarchy

1. The basics of Cache: SRAM and DRAM (main memory)

The solution 1s 1n speed

2. Virtual Memory: DRAM and DISK
The solution is 1n size

RIREHEMER ST




5.3 The basics of Cache

Simple implementations

X4 X4
B For each item of data at the X1 X1
lower level, there 1s exactly one xn-2 Xn -2
location in the cache where it
might be. Xn—1 Xn - 1
X2 X2
e.g., lots of items at the lower level 0
share locations in the upper level X3 X3
D TWO issueso a. Before the reference to Xn b. After the reference to Xn

= How do we know if a data item 1s in the cache?
m [fiti1s, how do we find it?

O Our first example: "direct mapped"
= block size is one word of data

CEY RS SRE R LTI
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Direct Mapped Cache

O Where can a block be placed in the upper level?

Cache

O O — O — O —
SO — — S O «— —
SO OO~ v «— «—

\\ \\
N ~

00001 00101 01001 01101 10001 10101 11001 11101

32 Block | [/

Memory

O Direct-mapping algorithm.
(Block address) modulo (Number of blocks in the cache)

[0 Fortunately, while the cache has 2" blocks, the corresponding index is
equal to the lowest n bits of memory block address. Here n=3. Let’s check

) 2k f RREHESMER SRR
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李雅茜
不是内存地址

李雅茜
容易定位

但是容易产生竞争


Tags and Valid Bits

O How do we know which particular block is
stored in a cache location?

m Store |

m Actual

m Called

block address as well as the data

tag

ly, only need the high-order bits

valid bit 1

| the tag

0 What if there is no data in a location?

= Valid bit: 1 = present, 0 = not present

= Initially O

RREHESMER SRR


李雅茜
可以将高位存到数据里面

tag位



有一个额外的控制信号

真正的有效数字写进去后

valid bit为1

因为真正的硬盘在写入有效信息前就会有一些东西在里面


Accessing a cache---how do we find it?

O Memory block address is larger than cache block address

TAG Index Byte offset

_ ~ x
N ;
Block address MOD Numbers of Cache Block

Index

Valid bit 000
001

010
011
100
101
110
111

0 2|2 |1Z2|Z2|Z2|Z2|(Z2 | Z

. The initial state of the cache after power-on

RREHESMER SRR




Cache Example

O 8-blocks, 1 word/block, direct mapped

O Access Sequence:
10110,11010,10110,11010,10000,00011,10000,10010

O Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
N

RREHESMER SRR



Cache Example &g e
O After Accessing 10110

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Tag Data

10 Mem([10110]

2
Zz|I<|Zz|Zz|Zz|Zz|Z2|Z2|<
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Cache Example &g e
O After Accessing 11010

Word addr Binary addr Hit/miss | Cache block
26 11 010 Miss 010

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

RS SRER LR




Cache Example i o
O After Accessing 10110, 11010

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

AR SRER LTI




10110,11010,10110.11010,10000.
CaChe Exa m p|e 00011.10000.10010

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

RIREHEMER ST




Cache Example i e
O After accessing 10010

Word addr Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

RS SRER LR




Direct Mapped Cache Construction

3130 ---131211 --.210 block block

tan
I—th Tag h \20 ~ \1 o D?ta
Index index 10 bit
cache 1024 block
Index Valid Tag Data
o
1
2
P
1021
1022
1023
\\20 4 32
— _
Tag bits: 32 - (n +m + 2) tag index block
A - . 2 offset
2°n: cache size
m: index to reference words in block

Cache size:
2"n x (block size + tag size + valid bit)

G RS SRR R LTI
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李雅茜
代表block是一个字的block

李雅茜
index 10 bit

代表cache有1024个block

李雅茜
剩下的高位是tag

李雅茜
tag为index位数 block

李雅茜
m多少个字 2是两比特offset


Bits in Cache

Example
0 How many total bits are required for a direct-mapped cache
16KB of data and 4-word blocks, assuming a 32-bit address?

Answer

16KB=4KWord=2"12 words

One block=4 words = 22 words

Number of blocks (index bit) = 212 + 22 = 210 blocks

Data bits of block =4x32=128 bits

Tag bits = address — index-block size =32-10-2-2 =18 bits

Valid bit = 1 bit

Total Cache size = 210 x (128+18+1)= 219x147= 147 Kbits
= 18.4KB

It is about 1.15 times as many as needed just for the data

address Tag bits n m Byte Offset

cache entry RVElIT) Tag bits Data
¥) 2 f RREHREMERSARFR
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Mapping an Address to Multiword Cache Block

Example

Consider a cache with 64 blocks and a block size of 16 bytes.
What block number does byte address 1200 map to?

(Block address) modulo (Number of cache blocks)

Where it g BLOCK Adres
Where the address of the block is .l.lfﬁ___ge ress_

Byte address 1200 _ 75
Bytes per block B 16

_______________________________________________

R

Notice!!! 75 modulo 64 =117} Then: get INDEX

_______________________________________________

L Byte address

Byte address )
Bytes per bloclJX Byte per block « L Bytes per blo CIJX Byte per block+( Byte per block-1)

Here: 1200 <«— 1215

)M h g ARSI SMERLHTER



Miss Rate vs Block Size

..........................................................................................

10% [
4K

/

L O
rate

<\
— O o 64K

0% , —h A A 256K
16 32 64 128 256
Block size

* Larger blocks exploit spatial locality to lower miss rates
* If blockis too large, the number of become small, and there will be
a great deal of competition for those block

* The miss rate actually goes up
The miss penalty also increases (cost to load large blocks)

) imir g 39 RS SRR R LT
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Handling Cache reads hit and Misses

O Read hits
m this 1s what we want!

0 Read misses—two kinds of misses
m instruction cache miss
m data cache miss

O let’s see main steps taken on an instruction cache miss
= Stall the CPU, fetch block from memory, deliver to cache, restart CPU read

1. Send the original PC value (current PC-4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to complete
its access. (in multiple cycles)

3. Write the cache entry, putting the data from memory in the data portion of the
entry, writing the upper bits of the address (from the ALU) into the tag field, and
turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction again, this time finding it in the cache.

%/4;@“ :\; /’:ﬁAN/'; le.\ﬁ;'s ? gﬁggm 5 ggiém ﬁﬁﬁ




Handling Cache Writes hit and Misses

O Write hits: Different Strategies

m write-back: Cause Inconsistent
o Wrote the data into only the data cache

0 Strategy ---- write back data from the cache to memory later
Fast!

m write-through: Ensuring Consistency
o Write the data into both the memory the cache
0 Strategy ---- writes always update both the cache and the memory
o Slower!----write buffer

0 Write misses:
= read the entire block 1nto the cache, then write the word

) i F RREISME R LSRR
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Four Questions for Memory Designers

Caching is a general concept used in processors, operating systems, file
systems, and applications.

0 Q1: Where can a block be placed in the upper level?
(Block placement)
= Fully Associative, Set Associative, Direct Mapped

0 Q2: How is a block found if it is in the upper level?
(Block identification)

» Tag/Block

0 Q3: Which block should be replaced on a miss?
(Block replacement)

= Random, LRU,FIFO

0 Q4: What happens on a write?
(Write strategy)

= Write Back or Write Through (with Write Buffer)

RIREHEMER ST




Q1: Block Placement

O Direct mapped

= Block can only go 1n one place in the cache
Usually address MOD Number of blocks in cache

O Fully associative

Block can go anywhere in cache.

OSet associative
= Block can go in one of a set of places 1n the cache.
= A set 1s a group of blocks in the cache.
Block address MOD Number of sets in the cache
= [f sets have n blocks, the cache 1s said to be n-way set
associative.

* Note that direct mapped is the same as 1-way set associative, and
fully associative is m-way set-associative (for a cache with m blocks).

RREHESMER SRR




Figure 8-32 Block Placement

Direct Mapped Fully-associative 2-way Set-associative
block 12 can go only into block 12 can go anywhere  block 12 can go anywhere in set 0
Block  block 4 (12 mod 8) (12 mod 4)
Number 0 1 2 3 4 5 6 1 01 2 3 4 5 6 17 0 1 2 3 4 5 6 1
Cache
Set Set Set Set
o 1 2 3
BlOCk Tt 1 1t 1 1111 11 2 2 2 2 22 2 2 22 33
0 1 2 3 45 6 78 9 0 1

Numbero 1 2 2 45 6 7 8 90 1 2 34 5 67 8 9

Memory
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Q2: Block Identification

O Tag

m Every block has an address tag that stores the main memory
address of the data stored in the block.

= When checking the cache, the processor will compare the
requested memory address to the cache tag -- if the two are
equal, then there 1s a cache hit and the data 1s present in the
cache

O Valid bit

m Often, each cache block also has a valid bit that tells if the
contents of the cache block are valid

) 2k f RIREHEMER ST
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The Format of the Physical Address

O The Index field selects

® The set, in case of a set-associative cache

= The block, in case of a direct-mapped cache

= Has as many bits as log2(#sets) for set-associative caches, or
log2(#blocks) for direct-mapped caches

0 The Byte Offset field selects

® The byte within the block
= Has as many bits as log2(size of block)
O The Tag is used to find the matching block within a set or
in the cache
= Has as many bits as

Address_size - Index size - Byte Offset Size

Block Address

Tag Index

Offset

Selects data within the

Stored in cache and used Selects set block
DIOCK

in comparison with CPPU address




Direct-mapped Cache Example (1-word Blocks)

LOAD R1, 0x04 TAG Index Byte Offset

31 432 1 0

0000...000 01 IOO

MEMORY
Address Data
0x00  0x00000000
0x04  0x12345678 Index Tag Data Valid Bit
0x08  0x87654321 0
0x0C  0x11111111 (
0x14  0x33333333 2 0 |
0x18  0x44444444 3 0
0x1C  0x55555555
0x20  0x10101010 l

RREHESMER SRR




Fully-Associative Cache example (1-word Blocks)

COAssume cache has 4 blocks

31 2 1 0

TAG Byte
Offset

|

Block Tag  Data alid Bi

0
1
2
3

% - > HITMISS
- = > HITMISS
©

>

—%L—» HIT/MISS

C c
2 S

RIREHEMER ST




2-Way Set-Associative Cache

0 Assume cache has 4 blocks and each block 1s 1 word
02 blocks per set, hence 2 sets per cache

Index

31 32/10

B
o
Block Tag Data Valid Bit
_>(l) } Set0
% } Set 1

O

»  HIT/MISS
= —> HIT/MISS

Correct? ‘

YT WSRO W W N W TS W we—— N W W W



Q3: Block Replacement

0O Ina direct-mapped cache, there is only one block that can be
replaced

0O In set-associative and fully-associative caches, there are N blocks
(where N is the degree of associativity)

Block 001 2 3 45 6 7 01 23 45 6 17

Number
Fully- 2-way Set-
Set Set Set Set
0 1 2 3
Block
Number T 1 1t 1 11 11 11 2 2 2 2 22 2 2 2 2 3 3
o 1 2 3 45 6 7T 8 90 1 2 3 4 5 67 8 9 0 1 2 3 45 6 78 9 0 1
Memory

ASNHUEHTI I rMI=H 2N =W1 m



Strategy of Block Replacement

O Several different replacement policies can be used
= Random replacement - randomly pick any block
0 Easy to implement in hardware, just requires a random
number generator
O Spreads allocation uniformly across cache
0 May evict a block that 1s about to be accessed
m Least-recently used (LRU) - pick the block in the set which
was least recently accessed
0 Assumed more recently accessed blocks more likely to
be referenced again
0 This requires extra bits in the cache to keep track of
accesses.
m First in,first out(FIFO)-Choose a block from the set which
was first came into the cache

) 2k f RIREHEMER ST
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Q4: Write Strategy

O When data 1s written into the cache (on a store), 1s the data also

written to main memory?
= If the data is written to memory, the cache is called a wrize-
through cache
0 Can always discard cached data - most up-to-date data is in memory
0 Cache control bit: only a valid bit
0 memory (or other processors) always have latest data
= If the data is NOT written to memory, the cache is called a write-
back cache

0 Can’t just discard cached data - may have to write it back to memory
0 Cache control bits: both valid and dirty bits
0 much lower bandwidth, since data often overwritten multiple times

O Write-through adv: Read misses don't result in writes, memory hierarchy is

consistent and it is simple to implement.

O Write back adv: Writes occur at speed of cache and main memory bandwidth
1s smaller when multiple writes occur to the same block.
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Write Stall

O Write stall --When the CPU must wait for writes to complete
during write through
O Write buffers
= A small cache that can hold a few values waiting to go to
main memory.
m Jo avoid stalling on writes, many CPUs use a write buffer.

= This buffer helps when writes are clustered.

= [t does not entirely eliminate stalls since it 1s possible for
the buffer to fill 1f the burst 1s larger than the buffer.

RIREHEMER ST




Write Buffers

Write Buffer

"'m? '

Deasdmmie buller

X

Dya

DRAM
(or lower mem)
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Write Misses

OWrite misses
m If a miss occurs on a write (the block is not present),
there are two options.
m WWrite allocate
0O The block is loaded into the cache on a miss
before anything else occurs.
m Write around (no write allocate)
0O The block is only written to main memory
0Olt is not stored in the cache.

m In general, write-back caches use write-allocate , and
write-through caches use write-around .

RREHESMER SRR




Larger Blocks Exploit Spatial Locality

O Taking advantage of spatial locality to lower miss rates
with many word in the block:

Bl Sl Tl st

31...16 15.-4 3210

I
12 J2 Byte

. 16
~ N
Hit Tag S N N offset Dafa
Index Block offset
‘16 bits‘ ) 128 bits
Vo Tag a Data
A
—| ¢ 4K
entries
\\1 6 \\32 \\32 \\32 \\32
=
| l\
Mux
(e )
. 32
pa 4-; I3 N
) A | r
i a?  ZHLome oo




Designing the Memory system to Support Cache

O Make reading multiple words easier by using banks of

memory
CPU CPU CPU
Cache T T TT YT T Cache
| Cache I
_ - o
Bus Bus Bus
~ - T~ —
Memory || Memory || Memory || Memory
Memory bank O || bank 1 || bank 2 || bank 3
Memory b. Wide memory organization c. Interleaved memory organization
[
It can get a lot more complicated...

a. One-word-wide
memory organization
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Performance basic memory organization

CPU

Assume
1 clock cycles to send the address

15 memory bus clock cycles for each DRAM access
initiated

1 bus clock cycles to send a word of data

Block size is 4 words

Every word is 4 bytes

' The time to transfer one word is 1+15+1=17

The miss penalty (The time to transfer one block 1s):
1+4 X (1+15)=65 CLKs

Bandwidth :  4x4 _ 1
65 " 4
Only one word is useful, and three other words may be
useless. So, for caches using four-word blocks, this
memory system is not viable.
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Performance in Wider Main Memory

O With a main memory width of 2 words(64bits)
The miss penalty:  4words/Block

---------------------

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------

Bandw1dth 4X4 16

= }5 ~0.48
CPU . . 33 .33 .
~—— O With a main memory width ot 4 words(128bits)
cache The miss penalty:  4words/Block
— 1+1 X (15+1)=17 CLKs
Multiplexor O
> 1133;3,’{,3@ Bandwidth : O .
BUS qual to time

to transfer one
ord.

4x4 _ 16
17 177098
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Performance in Four-way interleaved memory

O With 4 banks Interleaved Memory

The miss penalty: 4words/Block

.....

‘to transfer one word. i | o
Bandwidth : I = 0.8 o

20

--------

CPU

g:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII CaChe

P~

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -~ ol

Word
address

0

1
5
9
13

Parallel access

L werd— / Wm-d\B
Ba address P2V address

2

6

10

14

Optimizes sequential address access patterns

Memory
bank 0

Memory
bank 1

Memory
bank 2

Memory
bank 3

.
11
15

ank 2 addr'ess Bank 3
3
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Performance in Different Block Size

O Increasing the block size tends to decrease miss rate:

40%

35% -

30%

25%

20%

Miss rate

15% \
10%

5% ¢—0

0%

Block size (bytes)

O &o [

)
64 2
1 KB
e 8 KB
16 KB
& 64 KB
256 KB

O Use split caches because there is more spatial locality in code:

Block size in Instruction Data miss Effective combined
Program words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%
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5.4 Measuring and improving cache performance

O In this section, we will discuss two questions:
1. How to measure cache performance?
2. How to improve performance?

0 The main contents are the following:
1. Measuring cache performance
2. Reducing cache misses by more flexible placement of blocks
3. Reducing the miss penalty using multilevel caches

Average Memory Assess Time (AMAT) = hit time + miss time
= hit time + miss rate X miss penalty

Hit time: The time to access the upper level of the memory hierarchy, which includes the time needed to
determine whether the access is a hit or a miss.

miss penalty: The time to replace a block in the upper level with the corresponding block from the lower level,
plus the time to deliver this block to the processor.
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Measuring cache performance

0 We use CPU time to measure cache performance.
CPU time = CPU _time =1 XCPI X Clock cycle time
CPU execution clock cycles + Memory-stall clock cycles
Memory-stall clock cycles = # of (mem) instructions X miss ratio X miss penalty
= Read-stall cycles + Write-stall cycles
O For Read-stall
Read-stall cycles =

(# of) Read
Program

X Read miss rate X Read miss penalty

O For a write-through plus write buffer scheme:
(# of) Write
Program

Write-stall cycles= X Write miss rate X Write miss penalty

+ Write buffer stalls
O If the write buffer stalls are small, we can safely ignore them .

O If'the cache block size is one word, the write miss penalty is 0.
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Combine the reads and writes

O In most write-through cache organizations, the read and write miss
penalties are the same (question?)
= the time to fetch the block from memory.
O If we neglect the write buffer stalls, we get the following equation:

Memory-stall clock cycles =

Memory accesses
Program

X Miss rate X Miss penalty

We can also write this as:

Instructions % Misses
Program Instructions

Memory-stall clock cycles = X Miss penalty
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Calculating Cache Performance

O Assume:
instruction cache miss rate 2%
data cache miss rate 4%
CPI without any memory stalls 2
miss penalty 100 cycles

The frequency of all loads and stores in gcc is 36%, as we
see in Figure 3.26, on page 288.

O Question: How faster a processor would run with a perfect cache?

O Answer:
Instruction miss cycles =1X2% X100 =2.00I
Data miss cycles =1X36%X4% X100 =1.44l
Total memory-stall cycles= 2.001+ 1.44l =3.44 |

CPI with stall = CPI with perfect cache + total memory-stalls
=(2+ 3.44)l = 5.44I
RRGHESMELZ AR




How Faster a Processor for Ideal

CPU time with stalls _ IXCPlg, X Clock cycle

CPU time with perfect cache  IXCPl,eect X Clock cycle

CPly,, _ 5.44

= | =2.72
CPIperfect 2

O What happens if the processor is made faster?

Assume CPI reduces from 2 to 1
CPI with stall = CPI with perfect cache + total memory-stalls
=(1+3.44)1 = 4.441

CPU time with stalls _ CPlgan _ 4.44 —4 44
CPU time with perfect cache  CPlyerfect 1
Ratio time for Memory stalls
from 3.44 —63%  to 3.44 _770,
5.44 4.44
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Calculating cache performance
with Increased Clock Rate

O Suppose we increase the performance of the computer in the previous
example by doubling its clock rate for same memory system.

O Question : How much faster will the computer be with the faster clock to
slow clock?

O Answer
Total miss cycles per instruction = (2% X200) + 36% X (4% X 200)=6.88
CPI with cache misses =2 + 6.88 =8.88

Performance with fast clock _ Execution time with slow clock
Performance with slow clock Execution time with fast clock

_ ICXCPlg 6w ciock X Clock cycle  _ 5.44
IC X CPliast ciock X Clock cycle/2 ~ 8.88X1/2

This, the computer with the faster clock is about 1.2 times
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Solution 1
Reducing cache misses by more flexible placement of blocks

(1) The disadvantage of a direct-mapped cache
(2) The basics of a set-associative cache

(3) Miss rate versus set-associative

(4) Locating a block in the set-associative cache
(5) Size of tags versus set associative

(6) Choosing which block to replace
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The disadvantage of a direct-mapped cache

0o If the CPU requires the following memory units sequentially:
word O,word 8 and word 0. Word 0 and word 8 both are
mapped to cache block 0, so the third access will be a miss.

0 But obviously, if one memory block can be placed in any cache
block , the miss can be avoided. So, there is possibility that the
miss rate can be improved.

00001 00101 01001 01101 10001 10101 11001 11101
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The basics of a set-associative cache
Decreasing miss ratio with associativity

O A set-associative cache

m 1s divided into some sets. A set contains several blocks.

O A memory block is mapped to a set in the cache

= Through a mapping algorithm.
= The memory block can be placed in any block in the corresponding set.

O The mapplng algorithm iS: (set with direct-mapped)
Set number (Index) =
(Memory block number) modulo (Number of sets in the cache)

m [f a set has only one block, this set-associative cache is actually a direct-
mapped cache.

m [f a set-associative cache has only one set, this set-associative cache is called a
fully-associative cache.
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Memory block whose address is 12 in a cache
with 8 blocks for different mapped

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
T 1 T 1 Ta 1
a a
g 5 g 5 g

Search | search f f search TTTTTT11
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An eight-block cache configured as variety-way

- - c—y —— - ———— - = =

-v(direct mapped)
Block Tag Data

0

1 Two-way set associative
5 Set Tag Data Tag Data
3 0]

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

G RS SRR R LTS
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Miss rate versus set-associativity—8Blocks

Assume: there are three small caches, each consisting of four one-word blocks.
One cache is direct-mapped,
the second is two-way set associative
and the third is fully associative.
Question: Given the following sequence of block addresses:
0, 8 0, 6, 8, find the number of misses for each cache organization.
Answer: for direct-mapped5S misses

Contents after each reference

Memory  Hitor Set 0 Set 1 Set 2 Set 3
.0l MISS  Block0  Block1  Block2  Block 3
0 Miss M[O0]
8 Miss M[8]
0 Miss M[O0]
6 Miss M[0] M[6]
8 Miss M[8] M[6]
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Contents after each reference

Memory Hit or Set 0 Set 1
block miss Block 0 Block 1 Block 2 Block 3
0 Miss M[O0]
8 Miss M[0] M[8]
Lo w00 g | ]
6 Miss M[O0] M[6]
8 Miss M[8] M[6]

Finally, for the fully associative cache.

3 misses

Contents after each reference

Miss

M[8]

M[6]

Memory Hit or Only one set
block misS | Block0 | Block 1 Block 2 Block 3
0 Miss M[O0]
8 Miss M[0] M[8]

M[0]




How much of a reduction in the miss rate is achieved by
associativity?

Associativity Data miss rate
1 10.3%
2 8.6%
4 8.3%
8 8.1%

The data cache miss rates for organization like the Intrinsuty
FastMATH processor for SPEC2000 benchmarks with

associativity varying form one-way to eight-way .
0 Data cache organization is 64KB data cache and 16-word block
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Locating a block in the set-associative cache

31 30-.--1211 1098---3210

J22 8

N~ N

Index V Tag Data V Tag Data V Tag Data V Tag Data

J22 J32

— jgp - -
L EIE Q;P

? é—to—1 multiplexca

Hit Data
0 The implementation of a four-way set-associative cache
requires four comparators and a 4-to-1 multiplexor.
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Size of tags versus set associativity

Assume
Cache size is 4K Block
Block size is 4 words
Physical address is 32bits
Question

Find the total number of set and total number of tag bits for variety
associativity

Answer
Offset size (Byte) = 16= 24 4 bits for address
Number of memory block = 232+-24=228 28 bits for Block address
Number of cache block = 212 12 bits for Block address

For direct-mapped
Bits of index = 12 bits
bits of Tag = (28-12) X4K=16 X 4K=64 Kbits
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For two-way associative
Number of cache set = 212 + 2= 21
Bits of index = 12-1=11 bits
Bits of Tag = (28-11) X2X2K=17X2X2K=68 Kbits

For four-way associative
Number of cache set = 212 + 4= 210
Bits of index = 12-2=10 bits
Bits of Tag = (28-10) X4X1K=18X4X1K=72 Kbits

For full associative
Number of cache set = 212 - 212 = 20
Bits of index = 12-12=0 bits
Bits of Tag =(28-0) X4KX1=112 Kbits

Direct 2-way 4-way Fully
Index(bit) 12 11 10 0
16 17 18 28
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Choosing which block to replace

0 Inan associative cache, we must decide which block to replace
when a miss happens and the corresponding set is full.

0O The most commonly used scheme is least recently used (LRU),
which we used in the previous example. In an LRU scheme, the
block replaced is the one that has been unused for the longest
time.

O For a two-way set associative cache, the LRU can be
implemented easily. We could keep a single bit in each set. We
set the bit whenever a specific block in the set is referenced,
and reset the bit whenever another block is referenced.

O As associativity increases, implementing LRU gets harder.
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Decreasing miss penalty with multilevel caches

O Add a second level cache:
= often primary cache is on the same chip as the processor
= use SRAMs to add another cache above primary memory (DRAM)
= miss penalty goes down if data is in 2nd level cache
O Example:
m CPI of 1.0 on a 5GHz machine with a 2% miss rate, 100ns DRAM access
= Adding 2nd level cache with 5ns access time decreases miss rate to 0.5%

O Miss penalty to main memory is: _100ns

=500 clock cycles
0.2

O The CPI with one level of caching
Total CPI = 1.0 + Memory-stall cycles per instruction
=1.0+2% X 500=11.0

Miss penalty with levels of cache5 without access main memory
ns

0.2

=25 clock cycles
RREGHEMELZLHARR




O The CPI with Two level of cache with 0.5% miss rate for main memory

Total CPI = 1.0 + Primary stalls per instruction + Secondary stalls per
instruction

=1+2% X25+0.5% X 500
=1.0+0.5+2.5 =4.0

O The processor with secondary cache is faster by

11.0
4.0

= 2.8

O Using multilevel caches:
= try and optimize the hit time on the 1st level cache
= try and optimize the miss rate on the 2nd level cache
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Miss Penalties (Include Write-back Cache)

Read Miss Write Miss

Need to fetch data
from memory to cache

Need to
Yes Wwrite to cache

Write Allocate? j

Write
Around No

Write-back Cache LG

& Dirty? Save dirty
block first

No

Save dirty

Write-back Cache Qiadiagiiad

& Dirty?

Write Memory (Dirty) +
Fetch Memory (Block)

Write Memory (Dirty) +

Fetch Memory (Block) Fetch Memory (Block)

Write Memory (Block) Fetch Memory (Block)

» If the write buffer stalls are small, we can safely ignore them. (No penalty on Write Memory)
» If the cache block size is one word, the write miss penalty is 0. (Except the block is dirty)

) i RS STER TR

"
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5.7 Virtual Memory

O Main Memory act as a “Cache” for the
secondary storage.

0 Motivation:

= Efficient and safe sharing of memory among
multiple programs.

= Remove the programming burdens of a small,
limited amount of main memory.

O Translation of a program’s address space to
physical address
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5.7 Virtual Memory

O Main memory can act as a cache for the secondary storage (disk)

Virtual addr. Physical addr.

Address translation

.\
—

A1
L/ Disk addresses
O Advantages:

= illusion of having more physical memory
m program relocation
m protection

) 2k f RIREHEMER ST
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Pages: virtual memory blocks

O Larger number of virtual pages than physical pages (Really now?)
O Page faults: the data is not in memory, retrieve it from disk

huge miss penalty, thus pages should be fairly large (e.g., 4KB)
reducing page faults 1s important (LRU 1s worth the price)

can handle the faults in software instead of hardware

using write-through is too expensive so we use write back

3130292827 ..iviiiiinn, 156141312 111098 ...... 3210

Virtual page number Page offset

\/

( Translation ’

29 28 27 R Ry 15141312 111098 oloees 3210

Physical page number Page offset

Physical address
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Page Tables

1.Page Table : Virtual to physical address

2. Stored into the memory, indexed by the virtual page number

3. Each Entry in the table contains the physical page number for that virtual pages if
the page is current in memory

4. Page table, Program counter and the page table register, specifies the state of the
program. Each process has one page table. (Process switch? )

virtual page
number

| :I Page table _
Physical page or Physical memory

Valid disk address

i

S o) ISy Y Yol [\ FE Vo) S\ QUEN QUEN LN

> ./\x/ .
—
o Disk storage
« /
= S——

\J |

) ek g TR SIS R TR
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Placing a page and finding it again --Page Tables

Each program has its own page table
Virtual memory systems use fully associative mapping method

Page table register

Virtual address
31 30 29 28 27 <+« e e eeeoccennan 15 14 13 12 11 10 9 8 « + « =+« - 3 2 10
Virtual page number Page offset
12
. 20 > @
Valid Physical page number
® ®
Page table
18
v \\
If 0 then page is not
presentin memory
29 28 27 s cc e - 15 14 13 12 11 10 9 8--3--- 3 2 10
Physical page number Page offset
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Page Faults

O When the OS creates a process, it usually creates the space
on disk for all the pages of a process.

«  When a page fault occurs,
the OS will be given control
through exception
mechanism.

 The OS will find the page in
the disk by the page table.

* Next, the OS will bring the
requested page into main
memory. If all the pages in
main memory are in use, the
OS will use LRU strategy to
choose a page to replace

G S
o ZHEJIANG UNIVERSITY

Virtual page

number

Valid

Page table
Physical page or
disk address

Physical memory

v
N el SN RN e ) QSN PR e ) (S QSN QNG N

.\

.\

N f / >

L

/N Disk storage
</ TN
o/ N~
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How Large Page Table?

Assume:
m Virtual address 1s 32 bits
= page size 1s 4KB

= Entry size 1s 4 Bytes

732
Number of page table entries= ——>r —22

bytes
Size of page table =229 page table entries X 22 page table entry =4MB

O Five techniques is used to reduce page table size
m P428

) i RIS SMERLHTAR
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What about writes?

0 Because disk accesses are too slow, virtual memory systems can
not use write-through strategy.

0 Instead, they must use write-back strategy. To do so, the machines
need add a dirty bit to the entry of page table.

0 The dirty bit is set when a page is first written. If the dirty bit of a
page is set, the page must be written back to disk before being

replaced.

) 2k f RIREHEMER ST
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Making Address Translation Fast--TLB

O The TLB (Translation-lookaside Buffer) acts as Cache on the page table
O A cache for address translations: translation look aside buffer

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
| |
1]10]1 .
11101 .. Physical memory
1]11]1 - - -
——= 1[0 1 .
o(ofo0
1101
m TLB size: 16-512 entries
B Block size: 1-2 page table entries (typically 4-8 bytes each) PﬂEE table
m Hit time: 0.5-1 clock cycle Ph}’SiC‘ﬂl page

m Miss penalty: 10-100 clock cycles
W Miss rate: 0.01%—1%

Tt
) 51 4
= IS / A4
N NS
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Valid Dirty Ref or disk address

L

o

1111 ::

1]0[ 0 ] .

100 — | Disk “"ng___a
1[0 1 - -

ololo — 1 “:-ﬂ_______-f
1]0] 1 e 7 I |
101 o« 7 I

o(0]0 T | |
111]1 ¥ A 1" |
11711 v — - _ o,
0|00 - o ————

1[1]1 .
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FastMATH Memory Hierarchy

Valid Dirty

31 30 29-....

Virtual address

vrin14 13 12 11 10 9-------3 2 1 O

Virtual page number Page offset

20

-

Tag

+1 2

Physical page number

&=

e

2 —
e L —
D —

= —
) \20
Physical page number I Page offset

Physlcal address Biock

Physical address tag I Cache index offset

+1 8 Je Js 1@
-4 \8
J412 Data
Valid Tag
Cache
— e C
=

Cache hit .—G—

-+

Data

Byte
offset



TLBs and Caches

Virtual address

1

TLB access
TLB miss No Yes
exception Physical address
v
.| Tryto read data
from cache Write access
bit on?
| |
Write protection ) )
exception Write data into cache,
No Yes update the tag, and put
Cache miss stall the data and the address
into the write buffer
Deliver data
to the CPU

v) 4§ R SMER LTI
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Possible Combinations of Event

O Three different types of misses: TLB miss,
page Fault, cache miss

Page
E Possible? If so, under what circumstance?

hit hit miss | Possible, although the page table is never really checked if TLB hits.
miss hit hit TLB misses, but entry found in page table; after retry, data is found in cache.
miss hit miss | TLB misses, but entry found in page table; after retry, data misses in cache.
miss | miss miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
hit miss miss | Impossible: cannot have a translation in TLB if page is not present in memory.
hit | miss hit Impossible: cannot have a translation in TLB if page is not present in memory.
miss | miss hit Impossible: data cannot be allowed in cache if the page is not in memory.

¥) i f
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Protection in the virtual memory System

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not
write. This includes the user/supervisor mode bit, which dictates whether
the processor is in user or supervisor mode, the page table pointer, and the
TLB. To write these elements the operating system uses special instructions
that are only available in supervisor mode.

(%]

. Provide mechanisms whereby the processor can go from user mode to
supervisor mode, and vice versa. The first direction is typically accom-
plished by a system call exception, implemented as a special instruction
(syscall in the MIPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception, the program
counter from the point of the system call is saved in the exception PC (EPC),
and the processor is placed in supervisor mode. To return to user mode
from the exception, use the return from exception (ERET) instruction, which
resets to user mode and jumps to the address in EPC.

)i h g RRGHESRERZ RPN
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Modern Systems

O Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address |32 bits 32 bits
Page size 4 KB. 4 MB 4 KB, selectable, and 256 MB

TLB organization

A TLB for instructions and a TLB for data
Both four-way set associative
Pseudo-LRU replacement

Instruction TLB: 32 entries

Data TLB: 64 entries

TLB misses handled in hardware

LRU

TLB

A TLB for instructions and a TLB for data
Both two-way set associative

replacement

Instruction TLB: 128 entries
Data TLB: 128 entries

misses handled in hardware

Characteristic

Intel Pentium Pro

PowerPC 604

Cache organization

Split instruction and data caches

Split intruction and data caches

Cache size

8 KB each for instructions/data

16 KB each for instructions/data

Cache associativity

Four-way set associative

Four-way set associative

Replacement

Approximated LRU replacement

LRU replacement

Block size

e

32 bytes

32 bytes

ZHEJIANG UNIVERSI

Write policy

Write-back

Write-back or write-through
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Some Issues

O Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

O Design challenge: dealing with this growing disparity

O Trends:
= synchronous SDRAMs (provide a burst of data)

m redesign DRAM chips to provide higher bandwidth or
processing

m restructure code to increase locality

= use prefetching (make cache visible to ISA)
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Intel CorefRiZ=44

Core Microarchitecture

128 Entry P
ITLB 32 KB I-cache (8 way) -
T 160+ bits
h
5 <] x86 Instruction Pre-Decode. Fetch Buffer
Instruction
Fetch Unit

7+ Entry pop Buffer

b~ 4 nops

Register Alias Table and Allocator I

\#4 ucps

£

Retirement Register File

96 Entry Reorder Buffer (ROB)

£
4 ueps

<4 nops

(Program Visible State)

32 Entry Reservation Station

Pcoat O

Pcat 2

A A

e f
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Internal Results Bus

Store

128 bits 128 bits




MIPS MMU

OxFFFFFFFF Kernel Space
Mapped Uncached(MMU)
0xC0000000 (1GB)
—  OxBFFFFFFF Kernel Space(512MB)
e p— ‘ 0xA0000000 Unmapped Uncached
( OX1FFFFFFF |
' 0x00000000 | —  OX9FFFFFFF Kernel Space(512MB)
VIXSEEESS - 0x80000000 Unmapped cached
—_ OX7FFFFFFF
User Space(MMU)
(2GB)
0x00000000
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Homework
05.3,54, 5.5, 5.6,5.10, 5.11, 5.16, 5.17, 5.20
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@END
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