跳转至

HW10(习题五、六)

约 917 个字 预计阅读时间 5 分钟

B6

Question

\(\{X_i,i \ge 1\}\) 为独立同分布的正态随机变量序列,若 \(X_1 \sim N(\mu , \sigma^2)\) ,其中 \(\sigma > 0\) 。问以下的随机变量序列当 \(n \rightarrow +\infty\) 时依概率收敛吗?若收敛。请给出收敛的极限值,否则,请说明理由:

(1) \(\frac{1}{n}\sum\limits_{i=1}^nX_i^2\);

(2) \(\frac{1}{n}\sum\limits_{i=1}^n(X_i - \mu )^2\)

(3) \(\frac{X_1 + X_2 + \dots + X_n}{X_1^2 + X_2^2 + \dots + X_n^2}\);

(4) \(\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n\sum\limits_{i=1}^n(X_i - \mu)^2}}\);

Answer

(1)\(Var(X_i) = E(X_i^2) - E^2(X_i)\) 得到 \(E(X_i^2) = \mu^2 + \sigma^2\) 也即 \(E(\frac{1}{n} \sum\limits_{i=1}^n X_i^2) = \mu^2 + \sigma^2\)

\(P(|\frac{1}{n} \sum\limits_{i=1}^n X_i^2 - E(\frac{1}{n} \sum\limits_{i=1}^n X_i^2)| \ge \varepsilon ) \le \frac{Var(\frac{1}{n} \sum\limits_{i=1}^n X_i^2)}{\varepsilon^2} = \frac{1}{n\varepsilon^2}Var(X_i^2)\)

收敛于 \(\mu^2 + \sigma^2\)

(2)同理,收敛于 \(\sigma^2\)

(3)\(\sum\limits_{i=1}^nX_i\) 收敛于 \(n\mu\)\(\sum\limits_{i=1}^nX_i^2\) 收敛于 \(n(\mu^2 + \sigma^2)\) 所以收敛于 \(\frac{\mu}{\mu^2 + \sigma^2}\)

(4)同理,收敛于 \(\frac{\mu}{\sigma}\)


B7

Question

设随机变量序列 \(\{X_i,i \ge 1\}\) 独立同分布,都服从期望为 \(\frac{1}{\lambda}\) 的指数分布,其中 \(\lambda > 0\)

(1)若对任意的 \(\varepsilon > 0\) ,均有 \(\mathop{\lim}\limits_{n \rightarrow +\infty}P\{|\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} -a| < \varepsilon \} = 1\) 成立,求 \(a\)

(2)给出 \(\frac{1}{50} \sum\limits_{i=1}^{100} X_i\) 的近似分布;

(3)求 \(P\{\frac{1}{100} \sum\limits_{i=1}^{100} X_i^2 \le \frac{2}{\lambda^2} \}\) 的近似值;

Answer
  1. \(a = E(X_i^2) = (\frac{1}{\lambda})^2 + \frac{1}{\lambda^2}\) (指数分布的期望为 \(\frac{1}{\lambda}\) ,方差为 \(\frac{1}{\lambda^2}\))

解得 \(a = \frac{2}{\lambda^2}\)

\[E(\frac{1}{50} \sum\limits_{i=1}^{100} X_i) = 2E(X_i) = \frac{2}{\lambda}\]
\[D(\frac{1}{50} \sum\limits_{i=1}^{100} X_i) = \frac{1}{2500}D(\sum\limits_{i=1}^{100} X_i) = \frac{1}{2500} \times 100 \times \frac{1}{\lambda^2} = \frac{1}{25\lambda^2}\]

所以 \(\frac{1}{50} \sum\limits_{i=1}^{100} X_i \mathop{\sim}\limits^{\text{近似}} N(\frac{2}{\lambda}, \frac{1}{25\lambda^2})\)

  1. 对于 \(X_i \sim E(\lambda)\)
\[E(X_i^4) = \int_0^{\infty} x^4 \lambda e^{-\lambda x} dx = \frac{24}{\lambda^4}\]
\[\therefore \frac{1}{100} \sum\limits_{i=1}^{100} X_i \sim N(\frac{2}{\lambda^2}, \frac{1}{5\lambda^4})\]
\[\therefore P\{\frac{1}{100} \sum_{i=1}^{100} X_i^2 \le \frac{2}{\lambda^2}\} = P\{\frac{1}{100} \sum_{i=1}^{100} X_i^2 - \frac{2}{\lambda^2} \le 0\} = \Phi (\frac{1}{2}) = \frac{1}{2}\]

B9(2)

Question

设随机变量 \(X\) 服从辛普森(Simpson)分布(亦称三角分布),密度函数为

\[f(x) = \begin{cases}x,&0 \le x < 1 \\ 2-x,& 1 \le x < 2 \\ 0,& \text{其他} \end{cases}\]

(2)要保证至少有 \(95\%\) 的把握使事件 \(\{\frac{1}{2} < X < \frac{3}{2} \}\) 出现的次数不少于80,问至少需要进行多少次观察?

Answer
\[P = \int_{\frac{1}{2}}^1 xdx + \int_1^{\frac{3}{2}} (2-x)dx = \frac{3}{4}\]

出现次数 \(Y \sim B(n,\frac{3}{4})\),因此当 \(n\) 足够大时,\(Y \sim N(np,np(1-p)) = N(\frac{3}{4}n,\frac{3}{16}n)\)

\[P(Y \ge 80) = P(\frac{Y - \frac{3}{4}n}{\sqrt{\frac{3}{16}n}} \ge \frac{80 - \frac{3}{4}n}{\sqrt{\frac{3}{16}n}}) = 0.95\]

查表得 \(\frac{80 - \frac{3}{4}n}{\sqrt{\frac{3}{16}n}} > 1.64\),解得 \(n \ge 117\)


B11

Question

某次“知识竞赛”规则如下:参赛选手最多可抽取3个相互独立的问题——回答:如果答错就被淘汰,进而失去回答下一题的资格;每答对一题得1分,若3题都对则再加1分(即共得4分).现有100名参赛选手,每人独立答题.

(1)若每人至少答对一题的概率为0.7,用中心极限定理计算“最多有35人得0分”的概率;

(2)若题目的难易程度类似,每人答对每题的概率均为0.8,求这100名参赛选手的总分超过220分的概率.

Answer
  1. 记得0分 \(X\)\(X_i \sim B(1,0.3)\)\(X \sim B(100,0.3)\)

所以 \(X \sim N(30,21)\)

\[\therefore P(X \le 35) = \Phi (\frac{35 - 30}{\sqrt{21}}) \approx 86.21\%\]
  1. \(Y\) 为总分
\[E(Y_i) = 0 \times 0.2 + 1 \times 0.8 \times 0.2 + 2 \times 0.8^2 \times 0.2 + 4 \times 0.8^3 = 2.464\]
\[D(Y_i) = E(Y_i^2) - E^2(Y_i) = 2.792704\]
\[ \therefore \sum\limits_{i=1}^{100} Y_i = Y \sim N(246.4, 279.2704)\]
\[P(Y > 220) = P(\frac{Y - 246.4}{\sqrt{279.2704}} > \frac{220 - 246.4}{\sqrt{279.2704}}) = 1 - \Phi(\frac{220 - 246.4}{\sqrt{279.2704}}) \approx 94.3\%\]

A1

Question

假设 \(X_1, X_2, \dots , X_n\) 是从总体X中抽取的样本 \((n \ge 1)\) .当总体X服从如下分布时,写出样本的联合分布律或联合密度函数:

(1)总体服从二项分布B(10,0.2):

(2)总体服从泊松分布P(1):

(3)总体服从标准正态分布N(0,1);

(4)总体服从指数分布E(1).

Answer
\[P(x_1, x_2, \dots , x_n) = \prod_{i=1}^{n} C_{10}^{x_i} 0.2^{x_i} 0.8^{10 - x_i}, i=1,2,\dots ,n,x_i = 0,1,\dots ,10\]
\[P(x_1, x_2, \dots , x_n) = \prod_{i=1}^{n} \frac{e^{-1}}{x_i!} ,i=1,2,\dots ,n,x_i = 0,1,\dots\]

3.

\[f(x_1, x_2, \dots , x_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}}, i=1,2,\dots ,n,-\infty < x_i < +\infty\]

4.

\[f(x_1, x_2, \dots , x_n) = \prod_{i=1}^{n} e^{-x_i}, i=1,2,\dots ,n\]

A3

Question

从总体X中抽取样本容量为5的样本,其观测值为2.6,4.1,3.2,3.6,2.9,计算样本均值、样本方差和样本二阶中心矩

Answer

样本均值:

\[\overline{x} = \frac{2.6 + 4.1 + 3.2 + 3.6 + 2.9}{5} = 3.28\]

样本方差:

\[s^2 = \frac{1}{4} (\sum\limits_{i=1}^{5} x_i^2 - 5 \times \overline{x}) = 0.347\]

样本二阶中心矩:

\[B_2 = \frac{1}{5} \sum\limits_{i=1}^{5} (x_i - \overline{x})^2 = 0.2776\]

评论