HW5(习题二、三)¶
约 687 个字 预计阅读时间 3 分钟
B23¶
Question
设某群体的BMI(体重指数)值(单位:kg/m²) \(X\sim N(22.5,2.5^2)\) .医学研究发现身体肥胖者患高血压的可能性增大:当 \(X\le 25\) 时,患高血压的概率为10%;当 \(25<X\le 27.5\) 时,患高血压的概率为15%;当 \(X>27.5\) 时,患高血压的概率为30%.
(1)从该群体中随机选出1人,求他患高血压的概率;
(2)若他患有高血压,求他的BMI值超过25的概率;
(3)随机独立地选出3人,求至少有1人患高血压的概率.
Answer
-
\(P_2 = \frac{P(25 < X \le 27.5)\times 0.15 + P(X > 27.5)\times 0.3}{P(\text{患高血压})} = \frac{5445}{22271} \approx 0.2445\)
-
\(P_3 = 1 - (1 - P(\text{患高血压}))^3 = 1 - (1 - 0.111355)^3 \approx 0.2982\)
B33¶
Question
已知随机变量 \(X\) 的密度函数为
(1)求常数 \(c\) 的值;
(2)设 \(Y = 3X\) ,求 \(Y\) 的密度函数;
(3)设 \(Z = |X|\) ,求 \(Z\) 的分布函数及密度函数.
Answer
1.\(\int_{-1}^{2}c(4-x^2)dx = 1 \Rightarrow c = \frac{1}{9}\)
- \(F_Y(y) = P(Y \le y) = P(3X \le y) = P(X \le \frac{y}{3}) = F_X(\frac{y}{3})\)
两边都对 \(y\) 求导,得 \(f_Y(y) = \frac{1}{3}f_X(\frac{y}{3}) = \begin{cases}\frac{1}{27}[4 - (\frac{y}{3})^2], & -3 < y < 6 \\ 0, &其他\end{cases}\)
- \(F_Z(z) = P(Z \le z) = P(|X| \le z) = P(-z \le X \le z) = F_X(z) - F_X(-z)\)
两边都对 \(z\) 求导,得 \(f_Z(z) = f_X(z) + f_X(-z) = \begin{cases}\frac{2}{9}[4 - z^2], & 0 \le z < 1 \\ \frac{1}{9}[4 - z^2], & 1 \le z < 2 \\ 0, &\text{其他}\end{cases}\)
B39¶
Question
设随机变量 \(X \sim N(0,1)\) ,记 \(Y = e^X,\ Z = ln|X|.\)
(1)求 \(Y\) 的密度函数;
(2)求 \(Z\) 的密度函数;
Answer
- \(F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le ln y) = F_X(ln y)\)
两边都对 \(y\) 求导,得 \(f_Y(y) = \begin{cases}\frac{1}{y}f_X(ln y) = \frac{1}{y}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(ln y)^2},&y>0 \\ 0, &\text{其他} \end{cases}\)
- \(F_Z(z) = P(Z \le z) = P(ln|X| \le z) = P(-e^z \le X \le e^z) = F_X(e^z) - F_X(-e^z)\)
两边都对 \(z\) 求导,得 \(f_Z(z) = e^z \cdot f_X(e^z) + e^z \cdot f_X(-e^z) = \frac{1}{2\sqrt{\pi}}e^{z-\frac{1}{2}e^{2z}}, -\infty < z < +\infty\)
A5¶
Question
设二维离散型随机变量 \((X,Y)\) 的联合分布律为
X\Y | 0 | 1 |
---|---|---|
0 | 0.3 | a |
1 | b | 0.2 |
且已知事件 \(\{ X = 0\}\) 与事件 \(\{X + Y = 1\}\) 相互独立, 求常数 \(a,b\) 的值.
Answer
A8¶
Question
随机变量 \(X,Y\) 的概率分布律分别为
X | 0 | 1 |
---|---|---|
P | 0.4 | 0.6 |
Y | 0 | 1 | 2 |
---|---|---|---|
P | 0.2 | 0.5 | 0.3 |
且已知 \(P\{X=0,Y=0\} = P\{X=1,Y=2\} = 0.2\)
(1)写出 \((X,Y)\) 的联合分布律;
(2)写出给定 \(\{X=0\}\) 条件下 \(Y\) 的条件分布律;
Answer
X\Y | 0 | 1 | 2 |
---|---|---|---|
0 | 0.2 | 0.1 | 0.1 |
1 | 0 | 0.4 | 0.2 |
A9¶
Question
将一枚均匀的骰子抛2次,记 \(X\) 为第一次出现的点数,\(Y\) 为两次点数的最大值.
(1)求 \((X,Y)\) 的联合分布律及边际分布律;
(2)写出给定 \(\{Y=6\}\) 的条件下 \(X\) 的条件分布律;
Answer
1.
X\Y | 1 | 2 | 3 | 4 | 5 | 6 | \(\{X = i\}\) |
---|---|---|---|---|---|---|---|
1 | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{6}\) |
2 | 0 | \(\frac{1}{18}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{6}\) |
3 | 0 | 0 | \(\frac{1}{12}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{6}\) |
4 | 0 | 0 | 0 | \(\frac{1}{9}\) | \(\frac{1}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{6}\) |
5 | 0 | 0 | 0 | 0 | \(\frac{5}{36}\) | \(\frac{1}{36}\) | \(\frac{1}{6}\) |
6 | 0 | 0 | 0 | 0 | 0 | \(\frac{1}{6}\) | \(\frac{1}{6}\) |
\(\{Y = i\}\) | \(\frac{1}{36}\) | \(\frac{1}{12}\) | \(\frac{5}{36}\) | \(\frac{7}{36}\) | \(\frac{1}{4}\) | \(\frac{11}{36}\) |
X\Y | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
\(P\{X=i\|Y=6\}\) | \(\frac{1}{11}\) | \(\frac{1}{11}\) | \(\frac{1}{11}\) | \(\frac{1}{11}\) | \(\frac{1}{11}\) | \(\frac{1}{11}\) |