跳转至

HW9(习题四、五)

约 397 个字 预计阅读时间 2 分钟

B24

Question

(接第B20题)(1)求X与|X|的相关系数,并判断两者是否相关;

(2)判断X与|X|是否相互独立.

Answer
  1. \(Cov(X,|X|)=E(X|X|)−E(X)E(|X|) = 0\)所以\(\rho = 0\)\(X\)\(|X|\) 不相关;

\[f_X(x) = \frac{1}{2} e^{-|x|},-\infty < x < +\infty\]
\[f_{|X|}(y) = P\{|X| \le y\}\text{的导数} = e^{-y}, 0 \le y < +\infty\]
\[f_{X,|X|}(x,y) = \begin{cases}0.5 \cdot e^{-y} , & x = y \text{或} x = -y , y \ge 0\\ 0,& \text{其他} \end{cases}\]

\(f_{X,|X|}(x,y) \neq f_X(x) \cdot f_{|X|}(y)\),所以不独立


B28

Question

设随机变量 \(X_1,X_2,\dots,X_n\) 均服从标准正态分布并且相互独立。记\(S_k = \sum\limits_{i=1}^k X_i,T_k = \sum\limits_{j = n_0+1}^{n_0+k}X_j\),其中\(1 \le n_0 < k < n_o+k \le n\),求 \(S_k\)\(T_k\) 的相关系数

Answer
\[\rho(S_k, T_k) = \frac{\operatorname{Cov}(S_k, T_k)}{\sqrt{\operatorname{Var}(S_k) \cdot \operatorname{Var}(T_k)}}\]

方差:\(\operatorname{Var}(X_i) = 1 \quad \text{且} \quad \operatorname{Cov}(X_i, X_j) = 0 \, (i \neq j)\)

于是:\(\operatorname{Var}(S_k) = \operatorname{Var}\left(\sum_{i=1}^k X_i\right) = \sum_{i=1}^k \operatorname{Var}(X_i) = k\)

同理,\(T_k = \sum_{j=n_0+1}^{n_0+k} X_j\) ,且随机变量仍然相互独立,因此:

\[\operatorname{Var}(T_k) = \operatorname{Var}\left(\sum_{j=n_0+1}^{n_0+k} X_j\right) = \sum_{j=n_0+1}^{n_0+k} \operatorname{Var}(X_j) = k\]

随机变量的协方差定义为:\(\operatorname{Cov}(S_k, T_k) = \mathbb{E}[S_k T_k] - \mathbb{E}[S_k]\mathbb{E}[T_k]\)

由于 \(X_i\) 是标准正态分布,因此 \(\mathbb{E}[S_k] = \mathbb{E}[T_k] = 0\),从而:\(\operatorname{Cov}(S_k, T_k) = \mathbb{E}[S_k T_k]\) 利用独立性和交叉项的性质,仅保留 \(X_i\) 同时出现在两个求和中的项:

\[\mathbb{E}[S_k T_k] = \sum_{i=1}^k \sum_{j=n_0+1}^{n_0+k} \mathbb{E}[X_i X_j] = \text{重叠项的数量}\]

因此:\(\operatorname{Cov}(S_k, T_k) = k - n_0 \Rightarrow \rho(S_k, T_k) = \frac{k - n_0}{k}\)


B29

Question

\(X ∼ N(0,1)\), Y的可能取值为 \(\pm 1\),且\(P\{Y=1\} = p \ (0<p<1)\).设 \(X\)\(Y\) 相互独立,记 \(\xi = X \cdot Y\)

(1)证明:\(\xi ∼ N(0,1)\);

(2)计算 \(\rho_{X_{\xi}}\) ,并判断 \(X\)\(\xi\) 的相关性和独立性.

Answer
  1. \(Y = 1\) 时, \(\xi = X\) ;当 \(Y = -1\) 时,$ \xi = -X$ 。

于是,混合分布:

\[f_\xi(x) = P(Y=1) f_X(x) + P(Y=-1) f_X(-x) = p \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} + (1-p) \cdot \frac{1}{\sqrt{2\pi}} e^{-(-x)^2/2} = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.\]

因此, \(\xi \sim N(0,1).\)

    • \(\operatorname{Var}(X) = \operatorname{Var}(\xi) = 1\) ,因为 \(X \sim N(0,1)\)\(\xi \sim N(0,1)\)
    • 因此:\(\rho_{X \xi} = \operatorname{Cov}(X, \xi).\)
\[ \operatorname{Cov}(X, \xi) = \mathbb{E}[X \cdot \xi] - \mathbb{E}[X] \mathbb{E}[\xi] = \mathbb{E}[X \cdot \xi] = \mathbb{E}[X \cdot (X \cdot Y)] = \mathbb{E}[X^2 \cdot Y] = \mathbb{E}[X^2] \cdot \mathbb{E}[Y]\]

\(\mathbb{E}[X^2] = \operatorname{Var}(X) + (\mathbb{E}[X])^2 = 1\) ,而 \(\mathbb{E}[Y] = p \cdot 1 + (1-p) \cdot (-1) = 2p - 1\)

因此:\(\operatorname{Cov}(X, \xi) = 1 \cdot (2p - 1) = 2p - 1 \rightarrow \rho_{X_\xi} = 2p - 1\)

\(p=\frac{1}{2}\) 时, \(X\)\(\xi\)不相关;当 \(p > \frac{1}{2}\) 时, \(X\)\(\xi\)正相关;当 \(p < \frac{1}{2}\) 时, \(X\)\(\xi\)负相关;

\(p = 0.75\) ,则 \(\mathbb{E}[X \cdot \xi] = 2 \cdot 0.75 - 1 = 0.5\)

此时 \(\mathbb{E}[X] = 0\)\(\mathbb{E}[\xi] = 0\)\(\mathbb{E}[X \cdot \xi] \neq \mathbb{E}[X] \cdot \mathbb{E}[\xi]\)

因此 \(X\)\(\xi\)不独立。

\(0 < p <1\) 时, \(X\)\(\xi\)不独立;

Info

不独立是需要举反例或者写严谨的证明来说明的,不能用显然或者xx是xx的函数这种不严格的说法。

在p=1/2的时候,这里只是分别满足正态分布(不满足联合正态分布)所以不能拿相关系数=0判断独立性,这里的不独立是需要详细说明,不能一笔带过。


B33

Question

已知三维正态变量 \(X = (X_1,X_2,X_3)^T \sim N(a,B)\) ,其中

\[a = (0,0,1)^T, B = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 16 & 0 \\ -1 & 0 & 4 \end{pmatrix}\]

(1)写出 \(X\) 的每个分量的分布;

(2)判别 \(X_1,X_2,X_3\) 的相关性与独立性;

(3)若 \(Y_1 = X_1 - X_2\)\(Y_2 = X_3 - X_1\) ,求 \(Y = (Y_1,Y_2)^T\) 的分布.

Answer

(1) \(X_1 \sim N(0,1), X_2 \sim N(0,16), X_3 \sim N(1,4)\)

(2)

\[Cov(X_1,X_2) = 2 \quad Cov(X_1,X_3) = -1 \quad Cov(X_2,X_3) = 0\]

\(\rho_{X_1X_2} = 1\) \(X_1,X_2\) 相关不独立

\(\rho_{X_1X_3} = -\frac{1}{\sqrt{2}}\) \(X_1,X_3\) 相关不独立

\(\rho_{X_2X_3} = 0\) \(X_2,X_3\) 不相关且独立

\(X_1,X_2,X_3\) 相关且不独立

(3)

\[E(Y_1) = 0 \quad E(Y_2) = 1\]
\[Cov(Y_1,Y_1) = 13 \quad Cov(Y_2,Y_2) = 7 \quad Cov(Y_1,Y_2) = 0\]
\[\therefore Y \sim N(\mu, \varepsilon)\]
\[\mu = (0,1)^T \quad \varepsilon = \begin{pmatrix} 13 & 0 \\ 0 & 7 \end{pmatrix}\]

B34

Question

设有一煤矿一天的产煤量 \(X\) (以 \(10^4t\) 计)服从正态分布 \(N(1.5,0.1^2)\) .设每天产量相互独立,一个月按30天计,求一个月总产量超 \(46 \times 10^4t\) 的概率.

Answer

30天则 \(N(45,0.3) \rightarrow 1 - \Phi (\sqrt{\frac{10}{3}}) \approx 0.0339\)


B3

Question

设随机变量 \(X_i\) 的密度函数

\[f_i(x) = \begin{cases}\frac{i|x|^{i-1}}{2},&|x| \le 1 \\ 0, & \text{其他}\end{cases}, i=1,2,\dots,n\]

\(X_1,X_2,\dots,X_n\) 相互独立。令 \(Y_n = X_1X_2\dots X_n\),用切比雪夫不等式求使 \(P\{|Y_n| \ge \frac{1}{2}\} \le \frac{1}{9}\) 成立的最小 \(n\)

Answer
\[E(X_i) = 0 \rightarrow E(Y_n) = 0\]
\[E(X_i^2) = \frac{i}{i+2} \rightarrow Var(X_i) = \frac{i}{i+2} \rightarrow Var(Y_n) = \frac{2}{(n+1)(n+2)}\]
\[P\{|Y_n| \ge \frac{1}{2}\} \le 4Var(Y_n) \le \frac{1}{9} \Rightarrow n_{min} = 7\]

B4

Question

设随机变量序列 \({X_n,n\ge 1}\)独立同分布,都服从U(0,a),其中a>0,令\(X_{(n)} = max_{1\le i \le n}X_i\),证明: \(X_{(n)} \xrightarrow{P} a ,n \rightarrow \infty\)

Answer
  1. 要证\(\mathop{\lim}\limits_{n \to \infty} P(a - X_{(n)} \geq \varepsilon) = 0.\)由于 \(X_i \sim U(0, a)\) ,其分布函数为:
\[F(x) = P(X_i \leq x) = \begin{cases} 0, & x < 0, \\ \frac{x}{a}, & 0 \leq x \leq a, \\ 1, & x > a. \end{cases}\]

\(X_{(n)} = \max(X_1, X_2, \dots, X_n)\) ,有:\(P(X_{(n)} \leq x) = P(X_1 \leq x, X_2 \leq x, \dots, X_n \leq x) = \left(P(X_i \leq x)\right)^n = F(x)^n.\)

因此:

\[P(X_{(n)} \leq x) = \begin{cases} 0, & x < 0, \\ \left(\frac{x}{a}\right)^n, & 0 \leq x \leq a, \\ 1, & x > a. \end{cases}\]

由于\(P(a - X_{(n)} \geq \varepsilon) = P(X_{(n)} \leq a - \varepsilon) = \left(\frac{a - \varepsilon}{a}\right)^n.\)

且当\(n \rightarrow \infty\)\(\left(\frac{a - \varepsilon}{a}\right)^n \to 0.\)

得到 \(X_{(n)} \xrightarrow{P} a.\)

  1. \[\mathbb{E}[X_{(n)}] = \int_0^a x f_{X_{(n)}}(x) \, dx = \int_0^a x \cdot \frac{n}{a} \left(\frac{x}{a}\right)^{n-1} \, dx = \frac{1}{n+1}.\]

同理, \(\mathbb{E}[X_{(n)}^2] = a^2 \cdot \frac{n}{n+2}.\)

因此:\(\operatorname{Var}(X_{(n)}) = a^2 \cdot \frac{n}{n+2} - \left(\frac{an}{n+1}\right)^2.\)

\(n \to \infty\) 时:\(\operatorname{Var}(X_{(n)}) \to 0\) ,因此:\(P(|X_{(n)} - a| \geq \varepsilon) \to 0.\)

由切比雪夫不等式得:\(X_{(n)} \xrightarrow{P} a\)

Info

不能拿大数定律去做,这里不涉及均值,标准的做法是直接计算分布函数(需要根据分布放缩一步)或者切比雪夫不等式(计算均值和方差)


评论