
134

Reaching Consensus in the Byzantine Empire: A

Comprehensive Review of BFT Consensus Algorithms

GENGRUI ZHANG, FEI PAN, YUNHAO MAO, SOFIA TIJANIC, MICHAEL DANG’ANA,

SHASHANK MOTEPALLI, SHIQUAN ZHANG, and HANS-ARNO JACOBSEN, University of

Toronto, Canada

Byzantine fault-tolerant (BFT) consensus algorithms are at the core of providing safety and liveness guaran-

tees for distributed systems that must operate in the presence of arbitrary failures. Recently, numerous new

BFT algorithms have been proposed, not least due to the traction blockchain technologies have garnered in

the search for consensus solutions that offer high throughput, low latency, and robust system designs. In this

article, we conduct a systematic survey of selected and distinguished BFT algorithms that have received exten-

sive attention in academia and industry alike. We perform a qualitative comparison among all algorithms we

review considering message and time complexities. Furthermore, we provide a comprehensive, step-by-step

description of each surveyed algorithm by decomposing them into constituent subprotocols with intuitive

figures to illustrate the message-passing pattern. We also elaborate on the strengths and weaknesses of each

algorithm compared to the other state-of-the-art approaches.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies;

Additional Key Words and Phrases: Consensus protocols, distributed systems, fault tolerance

ACM Reference format:

Gengrui Zhang, Fei Pan, Yunhao Mao, Sofia Tijanic, Michael Dang’ana, Shashank Motepalli, Shiquan Zhang,

and Hans-Arno Jacobsen. 2024. Reaching Consensus in the Byzantine Empire: A Comprehensive Review of

BFT Consensus Algorithms. ACM Comput. Surv. 56, 5, Article 134 (January 2024), 41 pages.

https://doi.org/10.1145/3636553

1 INTRODUCTION

Byzantine fault-tolerant (BFT) consensus algorithms, which coordinate server actions under
Byzantine (arbitrary) failures, have been extensively studied due to the burgeoning development
of blockchain applications [55, 57]. Since BFT algorithms tolerate arbitrary faults (i.e., the behavior
of faulty servers (processes) is not constrained [82]), they have long been used in safety-critical
systems (e.g., aircraft [87, 96] and submarines [95]) where hardware may become unreliable in
hostile environments (e.g., extreme weather and radiation). Recently, driven by the rising interest
in blockchain technology, BFT algorithms have been widely deployed in numerous blockchain
platforms to provide decentralized solutions that engender trust without relying on a third

Authors’ address: G. Zhang, F. Pan, Y. Mao, S. Tijanic, M. Dang’ana, S. Motepalli, S. Zhang, and H.-A. Jacobsen, Univer-

sity of Toronto, 27 King’s College Circle Toronto, Ontario M5S 1A1 Canada; e-mails: {gengrui.zhang,fei.pan, yunhao.mao,

Sofia.tijanic, michael.dangana, shashank.motepalli, shiquan.zhang}@mail.utoronto.ca, jacobsen@eecg.toronto.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2024/01-ART134 $15.00

https://doi.org/10.1145/3636553

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

https://orcid.org/0000-0002-4112-9893
https://orcid.org/0009-0001-1771-0397
https://orcid.org/0000-0002-0557-7496
https://orcid.org/0009-0008-3436-3893
https://orcid.org/0009-0003-2736-1113
https://orcid.org/0009-0008-8246-2933
https://orcid.org/0009-0009-7112-2463
https://orcid.org/0000-0003-0813-0101
https://doi.org/10.1145/3636553
mailto:permissions@acm.org
https://doi.org/10.1145/3636553
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636553&domain=pdf&date_stamp=2024-01-12

134:2 G. Zhang et al.

Fig. 1. The taxonomy of state-of-the-art BFT consensus algorithms, where the position of each algorithm

indicates its inclination toward one of the three categories.

party, supporting cryptocurrencies [68], supply chains [78], international trade platforms [23],
and the Internet of Things (IoT) [34]. In these applications, BFT algorithms are essential
in providing correctness guarantees for consensus, as malicious behavior is becoming the
norm [2, 30, 44, 45].

In this article, we present a novel taxonomy for classifying state-of-the-art BFT consensus
algorithms. We conduct a systematic survey of selected algorithms that have had significant
impacts in both academia and industry. Our taxonomy presents three major categories: more
efficient, more robust, and more available BFT approaches, each with subcategories representing
distinct characteristics that contribute to the advancements in BFT consensus (shown in Figure 1).
We have also compared the message and time complexities of the surveyed algorithms in Table 1.

— More efficient BFT: The first category includes BFT algorithms focused on improving repli-
cation efficiency, such as reducing message complexity and pipelining mechanisms before
consensus.

— More robust BFT: The second category comprises BFT algorithms that prioritize robustness
and security against various attacks and malicious behavior. Key aspects under this category
include defending against various attacks, penalizing misbehavior, and improving fairness
in ordering transactions.

— More available BFT: The third category incorporates BFT algorithms that prioritize avail-
ability and system responsiveness under different network conditions, including asynchro-
nous protocols and leaderless protocols.

Due to the many optimizations of existing algorithms and the emergence of newly proposed
algorithms, the effort required to understand these algorithms has been growing dramatically [36,
69]. The difficulty stems from the greatly varying assumptions used in the various algorithms (e.g.,
failure and network assumptions), the inconsistent criteria of complexity metrics (e.g., message and
time complexities), and the lack of comprehensive, standard, and intuitive protocol descriptions
(e.g., message-passing patterns and workflows).

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:3

Table 1. Qualitative Comparisons Among State-of-the-Art BFT Algorithms in Terms of Message

Complexity in Normal Operation and View Changes as Well as Time Complexity

Algorithm Msg Cplx. (|M | entries) Msg Cplx. (f views) Time Cplx.

M
o

re
E

ffi
ci

en
t

PBFT [22]/BFT-SMaRt [11] O (|M |n2) O (f n3) 5

Zyzzyva [52]1 O (|M |n) O (f n3) 5

SBFT [43] O (|M |n) O (f n2) 6

HotStuff/LibraBFT [98] O (|M |n) O (f n) 8

DAG-Rider [50]2 O (|M |n3 logn) O (f n) 5+

Narwhal [29]2 O (|M |n3 logn) O (f n) 5+

M
o

re
R

o
b
u

st

Aardvark [25]3 O (|M |n2) O (f kn3) 5

Pompe [102]4 O (|M |n) + X X 4 + X

Spin [94] O (|M |n2) O (f n2) 7

RBFT [4] O (|M |n3) O (f n4) 7

Prosecutor [99] O (|M |n) O (f n2) 5

PrestigeBFT [101] O (|M |n) O (f n2) 7

M
o

re
A

v
ai

la
b
le DBFT [27]∗ O (|M |n2 + |c |n3) N/A logn

HoneyBadgerBFT [64]∗ O (|M |n + |c |n3 logn) N/A logn

BEAT0 [36]∗ O (|M |n + |c |n3 logn) N/A logn

BEAT1 [36]∗ and BEAT2 [36]∗ O (|M |n2 + |c |n3 logn) N/A logn

BEAT3 [36]∗ and BEAT4 [36]∗ O (|M | + |c |n3 logn) N/A logn

1 Zyzzyva obtains an O (n) message complexity only in the optimal path; otherwise, the message complexity is O (n2).
2 DAG-Rider and Narwhal use DAG-based mechanisms to achieve consensus; the minimum time complexity is 5

rounds.

3 Aardvark invokes a view change if a leader fails to meet expected throughput; it may undergo more than f view

changes.

4 Pompe achieves full consensus by relying on its underlying consensus algorithm, the complexity of which is

denoted by X .
∗ DBFT, HoneyBadgerBFT, and BEATs use the binary Byzantine protocol of a |c | message complexity.

In this article, we raise these challenges by providing comprehensive, step-by-step, and
intuitive descriptions of each surveyed BFT approach. We aim to significantly assist readers,
including researchers and practitioners, in understanding, analyzing, and evaluating the various
state-of-the-art BFT consensus algorithms. Our systematic method follows a structured approach
to break down intricate BFT approaches into basic components. Each survey consists of the
following components:

First, we present the system model and service properties of each BFT approach, covering aspects
such as the failure model, network model, safety, and liveness properties.

We then highlight unique features, considering how efficiency, robustness, or availability is
addressed. The consensus workflow is described based on whether an algorithm utilizes a leader
node, a leader-based or leaderless structure.

— Leader-based BFT: If the surveyed article involves a leader, our survey provides two subsec-
tions introducing two types of consensus:
— Replication consensus: We show how a transaction is committed, illustrating the lifecycle

of a transaction from being proposed by a client to being committed by the system.
— Leadership consensus: We explain how a leader is determined, addressing view changes or

leader elections.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:4 G. Zhang et al.

— Leaderless BFT: If the surveyed article does not involve a leader, our survey offers two sub-
sections detailing:
— Replication consensus: We illustrate how a transaction is committed without the coordina-

tion of a leader.
— Conflict resolution: We show how conflicts are resolved in leaderless approaches without

a global leader.

Finally, we conclude each surveyed approach with a list of its pros and cons. We also compare
the surveyed approach with other similar methods (if any), addressing their respective strengths
and weaknesses. In addition, each surveyed protocol is provided with visual summaries that de-
pict the workflow of the consensus process. These visual representations significantly enhance
the understanding of the original approaches, making them more accessible and facilitating the
implementation process.

Compared to previous work that has surveyed BFT algorithms, such as [5, 7, 19, 32], we
delve into the core BFT algorithms that achieve consensus and fault tolerance. Cachin et al. [19]
present blockchain platforms and BFT consensus protocols proposed before 2015. Bano et al. [7]
survey Proof-of-X protocols and hybrid protocols used in permissionless blockchains. Distler [32]
provides a broad view of BFT-related topics, including the overall architectures of BFT solutions,
agreement stages, checkpointing, failure recovery, and trusted subsystems. In contrast, our article
is dedicated to tackling the core consensus problem, demystifying intricate BFT mechanisms, and
improving the understandability of state-of-the-art BFT algorithms.

The remainder of this article is organized as follows: Section 2 presents the background of
commonly used assumptions of BFT consensus; Section 3 introduces more efficient BFT algo-
rithms that prioritize efficiency in replication and achieve high performance; Section 4 surveys
more robust BFT algorithms that fortify robustness and defend against various attacks; Section 5
presents more available BFT algorithms that can operate under asynchrony; and Section 6
discusses future research directions in BFT consensus.

2 BACKGROUND

This section serves as an introduction to the fundamental concepts underpinning the topic of
BFT consensus. BFT consensus algorithms play a crucial role in distributed systems by ensuring
agreement among nodes in the presence of maliciously faulty components. In this overview, we
delve into several key elements of BFT consensus algorithms, shedding light on the commonly
used system models and underlying assumptions.

The consensus problem and state machine replication. The consensus discussion often re-
lates to state machine replication (SMR) in distributed systems [61, 71, 72, 82]. State machines
serve as models for a collection of server replicas functioning coherently to provide one or more ser-
vices to clients. A state machine typically comprises two fundamental components: state variables

and commands. The state variables represent the current states of the system, while the commands
represent the transitions between different states [82].

Consensus algorithms synchronize and coordinate multiple state machines to ensure each ma-
chine computes the same result. As such, these machines effectively function as a logical single
server, providing a unified and consistent view of system states. Consensus algorithms maintain
this property even when some machines experience failures.

Byzantine failures. Byzantine failures are the strongest form of failures in the context of
SMR. Under the BFT model, servers can exhibit arbitrary behavior, including changing message
content and mutating their states [3]. A faulty server may intentionally collude with the other
faulty servers and jointly exhibit malicious behavior [58]. Byzantine failures differ from benign

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:5

failures [81], where the message content is immutable and the change in the state of faulty servers
is detectable.

Byzantine quorums. The decision-making in BFT algorithms often relies on quorum certifi-
cates [40], such as replicating a transaction or electing a leader server. A quorum certificate is
a set of identical messages collected from different participants. The minimum quorum sizes to
tolerate benign failures (e.g., Paxos [56], Raft [69], and Escape [100]) and Byzantine failures (e.g.,
PBFT [22] and HotStuff [98]) are f +1 and 2f +1, respectively. Byzantine quorums introduce more
redundancy to tolerate a stronger form of failure. Under BFT, since f nodes are assumed faulty,
the system must be flexible enough to exclude f nodes in a quorum. Additionally, a quorum must
at least have f + 1 non-faulty nodes in case f faulty nodes are included. Therefore, the minimum
size of Byzantine quorums is 2f + 1 in a total of n = 3f + 1 nodes.

Network assumption. Consensus algorithms may operate under different network assump-
tions, which are often classified as synchronous, asynchronous, and partially synchronous [37]. Syn-
chronous networks have a fixed upper bound (denoted by Δ) on the time for message delivery
and a fixed upper bound (denoted by δ) of the discrepancy of processors’ clocks, which allows
executions to be partitioned into rounds. In contrast, asynchronous networks have no fixed upper
bound of message delivery (i.e., Δ does not exist) or the discrepancy of processors’ clocks (i.e., δ
does not exist) [38]. In between the two assumptions, communication among servers can have a
global stabilization time (GST), unknown to processors. A network is partially synchronous if Δ
and δ both exist but are unknown, or Δ and δ are known after the GST [33, 37].

Complexity measures. Two complexity measurements are commonly used to evaluate the effi-
ciency of consensus algorithms: message complexity and time complexity. The message complexity

of a consensus algorithm is the total number of messages sent. For example, in an n-server clus-
ter whose communication topology is a complete (fully connected) graph, if a server broadcasts a
message for k rounds, the message complexity is O (kn). If every server broadcasts a message for
k rounds, the message complexity is O (kn2).

In addition, time complexity measures the number of message-passing rounds that an execution
of consensus takes. For example, if server Si sends a message to server S j and then S j replies to
Si , the time complexity is 2. When the network is asynchronous, measuring the time complexity
requires a finite delay time for message transmission [76].

Service properties. Consensus algorithms coordinate server actions and provide correctness
guarantees. In particular, an f -resilient BFT consensus algorithm needs to meet three criteria:
termination, agreement, and validity [58, 74].

Termination. Every non-faulty server eventually decides on a value.
Agreement. Non-faulty servers do not decide on conflicting values; i.e., no two non-faulty

servers decide differently.
Validity. If all servers have the same input, then any value decided by a non-faulty server

must be that common input.

The correctness guarantee can also be interpreted by safety and liveness [54, 80].

Safety. No two non-faulty replicas agree differently on a total order for the execution of re-
quests despite failures.

Liveness. An execution will terminate if its input is correct.

The safety property ensures that something will not happen: Correct replicas agree on the same
total order for the execution of requests in the presence of failures. The liveness property, however,
guarantees that something must happen: An execution eventually terminates if its input is correct;
in the context of SMR, clients eventually receive replies to their requests.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:6 G. Zhang et al.

Table 2. The Messaging Formats in PBFT

Message types Parameters piggybacked in messages

reqest 〈 op,timestamp,clientId 〉σc

pre-prepare 〈〈 view,seqNumber,digestOfRequest 〉σP
, request〉

prepare 〈 view,seqNumber,digestOfRequest,serverId 〉σi

commit 〈 view,seqNumber,digestOfRequest,serverId 〉σi

reply 〈 view,timestamp,clientId,serverId,resultOfOp 〉σi

checkpoint 〈 seqNumber,digestOfState,serverId 〉σi

view-change 〈 newView,seqNumber,C,P,Q,serverId 〉σi

view-change-ack 〈 newView,serverId,vcSenderId,digestOfVcMsg 〉σi

new-view 〈 newView,V,X 〉σP

3 TOWARD MORE EFFICIENT BFT CONSENSUS

Efficiency of replication is the highest priority for most BFT applications, including permissioned
blockchain platforms such as HyperLedger [2], CCF [84], and Diem [30]. After PBFT [22] pioneered
a practical solution for BFT consensus, numerous approaches have proposed extensions and op-
timizations to improve system performance [14, 22, 42, 45, 52, 53, 59, 98, 99, 102]. Among these
optimizations, leader-based BFT algorithms have gained favor due to their efficient coordination in
the consensus processes during normal operation. In this section, we first present a detailed survey
of PBFT [22] in Section 3.1, the foundation of modern BFT consensus algorithms. Then, as shown
in Figure 1, the rest of this section consists of BFT protocols that reduce message complexity, such
as SBFT [43] and HotStuff [98] (in Sections 3.2 and 3.3), utilize multi-leader consensus, such as
ISS [91] (in Section 3.4), and enable DAG-based pipelines, such as DAG-Rider [50] and Narwhal
and Tusk [29] (in Sections 3.5 and 3.6). In this section, we present comprehensive, step-by-step
descriptions of these algorithms and conduct a thorough analysis of the features that render them
more efficient.

3.1 PBFT: Practical Byzantine Fault Tolerance

3.1.1 System Model and Service Properties. PBFT pioneered a practical solution that achieves
consensus in the presence of Byzantine faults. PBFT guarantees safety when there are at most f
faulty replicas out of a total of n = 3f + 1 replicas; the safety guarantee does not rely on any
assumption of network synchrony; i.e., safety is provided in asynchronous networks. However,
PBFT requires synchrony with bounded message delays to guarantee liveness. The replication
protocol operates through a progression of views numbered with consecutive integers. The view-
change protocol first selects a replica as a primary in a view, and the other replicas assume a backup
role. The parameters of all messages involved in the replication and view-change protocols are
presented in Table 2.

3.1.2 The Replication Protocol. The consensus in replication consists of an array of linearizable
consensus instances for each client request. In each consensus instance, replicas make predicates

for the primary’s instructions in each phase based on quorums that include votes from 2f + 1
different replicas. The replication also uses checkpoints to periodically confirm that the requests
committed by terminated consensus instances have been successfully executed.

Specifically, a consensus stance starts when a client invokes an operation to a primary. As il-
lustrated in Figure 1(a), a client requests to invoke an operation (op) on the primary, which starts
the first phase in replication, the request phase. This operation invokes a PBFT service, such as

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:7

an invocation to propose or query a value (i.e., a write or read), and each operation has a unique
timestamp. After sending a reqest message, the client starts a timer, waiting for the completion
of the requesting operation: if the client receives f + 1 reply messages from different replicas, the
client considers the operation to be completed and stops the timer. However, if the client cannot
receive a sufficient number of replies before the timer expires, this implies that the invocation of
the requesting operation may have failed. This failure can be caused by internal faults (e.g., the
primary failed) and external faults (e.g., the request failed to be delivered to the primary). Clients
cannot deal with the former faults and must simply wait for the system to recover. However, the
latter faults can be handled by a different messaging scheme; if a client’s timer expires, the client
resends the request message by broadcasting it to all replicas. Replicas that receive such a request
transmit it to the primary. Although this scheme increases the messaging complexity of the re-
quest phase from O (1) to O (n), it allows the client to invoke operations when the link between
the client and primary is not reliable.

After receiving a request, the primary starts to conduct consensus among replicas to commit
the request. The consensus starts with the pre-prepare phase in which the primary assigns a unique
sequence number to the request. The sequence number is chosen from the range ofh toh+k , where
h is the sequence number of the last stable checkpoint, and k is a predefined value used to limit the
growth of sequence numbers. The limited growth prevents a faulty primary from exhausting the
space of the sequence numbers. Then, the primary assembles the current view number, sequence
number, and digest of the request message into a pre-prepare message and then signs it; the pre-
prepare message also piggybacks the original request received from the client, and the primary
sends the message to all backups.

Next, the process enters the prepare phase. After receiving the pre-prepare message, backups
1© verify the signature, 2© check that they are in the same view as the primary, 3© confirm that
the sequence number has not been assigned to other requests, and 4© compute the digest of the
piggybacked request to ensure the digests match. If the message is valid, backups proceed by broad-
casting prepare messages to all replicas. Then, a backup collects prepare messages from the other
backups. If the backup receives 2f prepare messages from different backups, the backup makes a
predicate that the request is prepared. The predicate is supported by a quorum certificate consisting
of 2f + 1 agreements (including itself) of the same order from different replicas. Since there are
at most f faulty replicas among the total of n = 3f + 1 replicas, the combination of pre-prepare
and prepare phases ensures that non-faulty replicas have reached an agreement on the order of
the request in the same view.

After the prepared predicate is made, the replica informs the other replicas about the predicate
in the commit phase by broadcasting a commit message. Similar to the previous phase, replicas
make a predicate of the request as committed when 2f commit messages have been received from
different replicas; the redundancy forms a quorum certificate that 2f + 1 replicas have committed
the same request in the agreed order. The quorum certificate also guarantees a weak certificate,
which supports a committed-local predicate that f + 1 replicas have committed the request. By
the end of the commit phase, the quorum certificate provides the safety property: no two correct
replicas execute the request differently.

Finally, when predicate committed is valid, a backup starts the reply phase and sends the client
a reply message with a Boolean variable (resultOfOp=true), indicating that the consensus for
committing the proposed request is reached. The client waits for a weak certificate to confirm the
result; that is, it waits for f + 1 replies with valid signatures from different replicas.

Once a request is committed, the execution of the request reflects the state of a replica. The
replica must show the correctness of its states when sharing them with other replicas. Instead of
generating proofs for every execution, the algorithm periodically computes proofs for an array

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:8 G. Zhang et al.

Fig. 2. The message-passing workflow of normal operation and view changes in a four-replica PBFT system.

of executions, namely, checkpoints, as a way to show states. To produce checkpoints, a replica
broadcasts a checkpoint message. If 2f + 1 checkpoint messages are collected, the proof of the
checkpoint is formed, and the checkpoint becomes a stable checkpoint. The sequence number of
the stable checkpoint is denoted by h as a low water mark. A high water mark is H = h +k where
k is a sufficiently large predefined number. The low and high water marks bound the growth of
sequence numbers, as introduced in the pre-prepare phase. After obtaining a stable checkpoint,
the intermediate log entries for creating previous quorum certificates can be discarded. The in-
cremental computation of checkpoints can clean log entries appended at a previous checkpoint.
Thus, this progressive oblivation of stale log entries achieves garbage collection and reduces space
overhead.

3.1.3 The View-Change Protocol. When a primary fails, the coordination of consensus is
impeded, which puts liveness in jeopardy. PBFT handles primary failures by its view-change
protocol, and the ability to progress in the succession of views underpins liveness. Specifically,
if the primary of view v fails, the algorithm proceeds to view v + 1 and selects a new primary
such that P = (v + 1) mod n. During a view change, replicas may have various replication
states because replication works in an asynchronous premise; i.e., replicas may not be fully
synchronized. Thus, this variety produces many tricky corner cases that are difficult to handle,
bringing challenges to design and implementation. PBFT has different view-change protocols
presented in the literature [20–22]. We summarize the version in [21], which improves the version
presented in [22] but may require unbounded spaces.

A view-change process has three phases (shown in Figure 2(b)). In view v , initially, a backup
starts a timer after receiving a valid request if the timer is not running at the moment. Then,
the backup starts to wait for the request to be committed. The request can be received from the
primary or clients. The backup stops its timer when the request is committed but restarts the
timer if there are outstanding valid requests that have not been committed. If its timer expires, the
backup considers the primary failed and prepares to enter view v + 1 by starting the view-change

phase. It broadcasts a view-change message, where newView = v + 1 and the sequence number
is the latest stable checkpoint; C,P, and Q are indicators of the replication progress in view v :
C contains the sequence number and digests of each checkpoint, and P and Q store information
about requests that have prepared and pre-prepared between the low and high water marks,
respectively.

After receiving a view-change message, a replica verifies the message such that P and Q are
produced in views that are less than v . Then, the replica sends a view-change-ack message to
the primary of view v + 1. The ack message contains the current replica ID, the digest and the
sender of the received view-change message. The primary of view v + 1 keeps collecting view-
change and view-change-ack messages. After receiving 2f −1 view-change-ack messages that
acknowledge a backup i’s view-change message, the primary adds this view-change message
to a set S and thus, a quorum certificate, called view-change certificate, is formed.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:9

Fig. 3. The message-passing in normal operation and view change in SBFT when n = 4, f = 1, c = 0.

Next, the new primary pairs the replica ID with its view-change message in S to a setV and
selects the highest checkpoint, h, that is included in at least f + 1 messages in S. The primary
extracts requests whose sequence numbers are between h and h + k and have been prepared in
viewv or pre-prepared by a quorum certificate and adds these requests into a setX. SetsV andX
allow requests that are uncommitted but seen by a quorum in the previous view to be processed
in the new view.

Finally, backups check whether the messages in V and X support the new primary’s decision
to choose checkpoints and the continuance of uncommitted requests. If not, the replicas start a
new view, moving to view v + 2. Otherwise, the legitimacy of the new primary is confirmed while
the view-change protocol terminates and normal operation resumes.

3.1.4 Pros and Cons. PBFT pioneered a practical solution for Byzantine fault tolerance in
asynchronous networks and made a significant impact as the beginning of an era of efficient BFT
algorithms. The extended version of PBFT [21] also provided a proactive recovery approach to
recover faulty replicas. PBFT was adopted by many permissioned blockchains, although it was
not designed to cope with many failures. Numerous works are inspired by PBFT to obtain higher
throughput and lower latency consensus (e.g., BFT-SMaRt [11], SBFT [43], HotStuff [98], and
Prosecutor [99]).

However, PBFT’s quadratic messaging complexity hinders it from use in applications at
large scales [13, 93]. Furthermore, the client interaction may lead the system to repeated
view changes without making progress if faulty clients use an inconsistent authenticator on
requests [25].

3.2 SBFT: A Scalable and Decentralized Trust Infrastructure

3.2.1 System Model and Service Properties. SBFT [43] is a leader-based BFT consensus algo-
rithm that tolerates f Byzantine servers and c crashed or straggler servers by using 3f + 2c + 1
servers in total. Similar to Zyzzyva [52], SBFT enables a fast path for achieving consensus if
no failure occurs and the network is synchronous. Otherwise, SBFT can seamlessly switch
to a slow path, namely, linear-PBFT, featuring a dual model without engaging view changes.
Compared with PBFT [22], SBFT avoids the quadratic Byzantine broadcast (i.e., n-to-n messaging)
by utilizing threshold signatures; threshold signatures convert an array of signed messages into
one threshold signed message where a threshold indicates the number of signers. By utilizing
threshold signatures, under normal operation, SBFT achieves linear consensus with a message
transmission cost of O (n).

3.2.2 The Replication Protocol. SBFT uses different servers acting as “local” primaries in
different phases, amortizing the coordination workload among a group of selected collectors. In
particular, as shown in Figure 3(a), SBFT delineates three key phases under normal operation; in
each phase, messages are broadcast and collected by a single server. The fast path mode of SBFT,

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:10 G. Zhang et al.

in which the network is synchronous and no servers fail, makes use of this messaging scheme to
achieve fast consensus.

Fast path. First, in the pre-prepare phase, the primary manages the order of transactions
proposed by clients and broadcasts instructions to all other servers. Then, after receiving the in-
struction from the primary, servers validate the primary’s message and prepare a reply message;
instead of replying to the primary, servers send the reply message to the commit collector (C-

collector). Next, in the full-commit-proof phase, the C-collector takes the primary responsibility
by collecting signed replies, converting them into one threshold signed message, and broadcasting
the message to all other servers. Finally, in the full-execute-proof phase, the leadership duty is
assigned to the execution collector (E-collector). The E-collector collects replies, aggregates them
into one threshold signed message, and disseminates them to the others including the proposing
client. Compared with PBFT, whose clients confirm the commit of a proposed transaction based
on f + 1 messages, SBFT sends only one confirm message to a proposing client.

linear-PBFT. In contrast to the fast path mode, under the presence of failures or partial syn-
chrony, SBFT switches to the linear-PBFT mode. In this mode, regardless of n, there are at most
2 collectors or all collector roles are aggregated to the primary. The reason this model is called
linear-PBFT is that if SBFT uses only the primary as all “local” leaders in each phase, the workflow
becomes similar to PBFT [22]. Nonetheless, the messaging complexity is reduced from O (n2) to
O (n), as each server receives an O (1) threshold signed message in the linear-PBFT mode.

In a given view, SBFT selects a primary based on the view number and chooses collectors based
on the commit state index (sequence number) and the view number. SBFT suggests randomly
selecting a primary and collectors to increase robustness, though the design and implementation
are unprovided. In the linear-PBFT mode, the primary is always chosen as the last collector. The
transition of server roles is initiated by view changes, which select a new set of a primary and
collectors when the current primary is faulty.

3.2.3 The View-Change Protocol. SBFT’s view change mechanism has a message transmission
complexity of O (n2) (shown in Figure 3(b)). A view change is initiated when a replica triggers
a timeout or receives a proof that f + 1 replicas suspect the primary is faulty. This begins the
view-change trigger phase; in the worst case, all servers trigger new views, resulting in anO (n2)
message transmission. Then, in the view-change phase, each replica maintains the last stable
sequence number, denoted by ls . Since the network can be partially synchronous, concurrent in-
process consensus may lead to discrepant ls among servers; SBFT limits the number of outstanding
blocks by a predefined parameter, denoted by win; thus, a sequence number s lies between ls and
ls+win. The sequence number indicates the state of a server; the servers that have triggered a view
change send the new primary a view-change message consisting of ls and digests of corresponding
states from ls to ls +win. After the new primary solicits a set of 2f + 2c + 1 view-change messages,
denoted by I, in the new-view phase, it initiates a new view and broadcasts I to all other servers.
Then, in the accepting a new-view phase, servers accept the values indexed from slot ls to
ls +win or adopt a safe value, a symbol that the corresponding sequence number can be used for
a future transaction as its index in the new view.

3.2.4 Pros and Cons. By utilizing threshold signatures, SBFT achieves linear message transmis-
sion under normal operation in both fast path and linear-PBFT modes. Compared with PBFT, SBFT
also reduces client communication fromO (f +1) toO (1) since E-collectors aggregate server replies
in the full-execute-proof phase. However, SBFT inherits some weaknesses from PBFT [25].
Faulty clients can trigger unnecessary view changes if they only partially communicate with f +1
replicas. In SBFT, a view change is triggered if f + 1 replicas complain; faulty clients can exploit
this feature by sending transactions to a set of f + 1 replicas excluding the primary. After the

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:11

Fig. 4. The workflow of the 4-phase replication under normal operation in HotStuff.

f + 1 replicas trigger timeout, a view change is initiated to replace the correct primary, invoking
unnecessary leadership changes.

3.3 HotStuff: BFT Consensus in the Lens of Blockchain

3.3.1 System Model and Service Properties. HotStuff [98] is a leader-based BFT consensus algo-
rithm that tolerates up to f Byzantine servers using a total of 3f + 1 servers. It assumes a partially
synchronous network to achieve liveness, whereas safety does not rely on any assumption of net-
work synchrony. HotStuff guarantees optimistic responsiveness; i.e., a consensus decision requires
only the first 2f + 1 messages to make progress. In addition, HotStuff rotates primary servers for
each consensus instance to ensure chain quality [39]. Similar to SBFT [43], HotStuff uses threshold
signatures to obtain consensus linearity (i.e.,O (n) messaging complexity) under normal operation,
reducing the communication overhead of Byzantine broadcasts that reach consensus by n-to-n
messaging in PBFT [22]. However, in the worst case of cascading failed primaries, HotStuff takes
up to O (f ∗ n) rounds to reach consensus, on the order of O (n2).

3.3.2 The Replication Protocol. A replication process starts when a client broadcasts a request
to invoke an operation to all replicas (shown in Figure 4). Similar to PBFT [22], the client waits
for replies from f + 1 replicas to confirm that an invoked operation is executed. HotStuff does
not further discuss the handling of client failures but references standard literature for handling
numbering and deduplication of client requests [11, 22].

HotStuff operates in the succession of views. Under normal operation, a consensus process has
four phases (shown in Figure 4). After receiving a client request, the primary broadcasts a prepare
message to all replicas. A replica verifies the message based on two criteria: 1© the message extends
from a previously committed message (they are continuous with no other messages in between),
and 2© it has a higher view number (viewNum) than the current view number. If the message
is verified, the replica signs a prepare-vote message by its partial signature and sends the vote
back to the primary. The primary waits for 2f + 1 votes to form a quorum certificate (QC)
for the prepare phase, denoted by prepareQC. After a prepareQC is formed, the primary starts a
pre-commit phase by broadcasting a message with the prepareQC. All replicas store a received
prepareQC in this phase and send a commit-vote message signed by their partial signatures back to
the primary. When the primary receives 2f +1 votes, it forms a pre-commitQC for this pre-commit
phase. Then, it starts a commit phase by broadcasting messages with pre-commitQC to all replicas.
Replicas reply to the primary with a commit vote and update a local variable, denoted by lockedQC,
that keeps counting the number of received QCs for a request. When the primary receives 2f + 1
commit votes, it broadcasts a decide message to all replicas. Replicas consider the consensus of
the current client request to be reached and then execute the operation in the request. Replicas
then increment the viewNum and send a new new-view message to the new primary. Replicas
also send a confirmation to the proposing client, indicating that the request is locally executed.
The client waits for f + 1 messages to confirm that its proposed request is executed.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:12 G. Zhang et al.

Throughout a consensus process, each replica stores three key variables to reach consensus for
a client request: prepareQC, the highest locked prepare message that a replica knows; lockedQC,
the highest locked commit message that a replica knows; and viewNum, the current round the
replica is in, updated with each new-view.

Unlike PBFT [22] and other leader-based protocols that maintain stable leadership [11, 43, 52,
99], HotStuff rotates leadership for each consensus instance. Each consensus instance, identified
by a monotonically increasing viewNum, begins with a new-view message with viewNum and
references to the highest quorum certificate from the most recent prepare round, prepareQC. The
primary for the next round collects 2f + 1 new-view messages to identify the highest preceding
view that it extends from, based on collected prepareQCs. If the new primary cannot collect a
new-view message from 2f + 1 in time, the other replicas will trigger timeouts and initiate a view
change that rotates the primary role to the next server.

3.3.3 The View-Change Protocol. With the motivation of ensuring chain quality [39] for
blockchain applications, HotStuff enables frequent view changes compared to state-of-the-art
leader-based protocols [22, 43, 52, 99]. Each consensus instance starts with a new primary that
conducts consensus by broadcasting coordination messages and collecting threshold signatures.
As a result, the view change is engraved at the core of the HotStuff protocol. HotStuff adopts
PBFT’s leadership rotation scheme where a new primary p in a view v is decided such that p = v
mod n where n is the number of total servers. In addition, a broad range of strategies could be used
for rotating primaries in each phase. For instance, LibraBFT [8], a variant of HotStuff in the Libra
blockchain, uses round-robin leadership selection among all replicas to choose a primary.

3.3.4 Pros and Cons. By using threshold signatures, HotStuff achieves linear message trans-
mission for reaching consensus. In each phase, the primary collects votes and builds threshold
signatures that can be pipelined; pipelining of decisions can further simplify the protocol for
building chained HotStuff, similar to Casper [16], and reduces the time complexity in reaching
consensus. Furthermore, HotStuff can be extended to permissionless blockchains using delay
towers (e.g., [67]).

However, HotStuff’s frequent leadership rotation becomes problematic in the presence of fail-
ures. Since each server conducts a consensus instance for client requests, under f failed servers,
HotStuff’s throughput drops significantly because the f failed servers cannot achieve consensus
when they are assigned with primary duties [99].

3.4 ISS: State Machine Replication Scalability Made Simple

3.4.1 System Model and Service Properties. Insanely Scalable State Machine Replication
(ISS) [91] introduces a generic framework that scales single-leader total order broadcast (TOB)
protocols into a multi-leader protocol. This is achieved by partitioning the workload among
multiple leaders and associating each with a Sequenced Broadcast (SB) instance that runs a
single-leader TOB protocol; since SB instances can operate independently, this allows multiple
TOB instances to run in parallel, thereby achieving a multi-leader protocol. ISS assumes a partially
synchronous network and tolerates up to f Byzantine faulty nodes among 3f + 1 nodes in
total. The evaluation results show that ISS’s multi-leader protocol outperforms single-leader
protocols; its throughput is 37×, 56×, and 55× higher than PBFT [22], Chained HotStuff [98], and
Raft [69], respectively.

3.4.2 The Replication Protocol. In ISS, each node maintains a contiguous log to contain all ac-
cepted messages, as shown in Figure 5(a), and each message is comprised of client requests that
are batched in order to decrease message complexity. Each position in the log corresponds to a

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:13

Fig. 5. The workflow of ISS for utilizing multi-leader consensus.

sequence number (SN) based on its offset from the start of the log. The log is split into epochs
containing a group of continuous sequence numbers, and all messages in an epoch must be pro-
cessed before the next epoch may begin. In Figure 5(a), epoch 0 consists of 5 SNs: 1, 2, 3, 4, and 5.
Each epoch is further partitioned into segments by assigning SNs to leader nodes in a round-robin
fashion such that each segment is ultimately associated with one leader. Segments 1, 2, and 3 in
Figure 5(a) contain SN 1 and 4, 2 and 5, and 3, respectively. Furthermore, all client requests received
in ISS are sorted into buckets based on a modulo hash function. These buckets are assigned to lead-
ers such that no leaders have the same bucket(s) and the same client request cannot be proposed
multiple times.

ISS begins by selecting leader(s) based on a leader selection policy (see Section 3.4.3) and gives
each leader a segment in the current epoch. In Figure 5(a), the 5 sequence numbers are divided into
3 segments; nodes N 1, N 2, and N 3 are selected as leaders and are associated with segments 1, 2,
and 3, respectively. Each leader is allowed to make proposals by using only sequence numbers of
its own segment. Thus, no two proposals can have the same sequence number. Next, each leader is
assigned one bucket from which may take client request batches to use for proposals. In Figure 5(b),
N 1, N 2, and N 3 are assigned buckets B1, B2, and B3, respectively.

Following the initial configuration, ISS begins to achieve consensus via multiple SB instances,
each associated with one leader and its segment. In Figure 5(b), N 1, N 2, and N 3 are the leaders
of concurrent SB instances 1, 2, and 3, respectively. Every node partakes in all SB instances but is
the leader of at most one instance. Leaders receive client requests, denoted by <SMR-CAST|rx >,
and hash them into their local bucket queues. A leader waits until 1© its bucket queue reaches
a predefined batch size (e.g., the batch size in Figure 5(b) is 3 (i.e., |Bi | = 3)), or 2© a predefined
amount of time since the last proposal has elapsed. The leader then packs the queued requests into
a batch (e.g., βA) and broadcasts SB-CAST messages for its SB instance with one of its sequence
numbers.

At this point, each leader runs the underlying wrapped TOB protocol (e.g., PBFT, HotStuff, or
Raft) to achieve consensus for its proposed SB instance among all nodes. Since each SB instance is
associated with different leader nodes, ISS empowers multiple SB instances to operate in parallel.
For example, N 1, N 2, and N 3 can conduct consensus for SB instances 1, 2, and 3 simultaneously
in a non-blocking way. When consensus is reached for an SB instance, all non-faulty nodes
sb-deliver the batch piggybacked in the SB instance. If consensus cannot be reached, a ⊥ will
be delivered to the log. For example, if N 2 becomes faulty when it starts to sb-deliver for βB , ⊥
is placed at SN 2. When a batch is sb-delivered successfully, the use of TOB guarantees that all
non-faulty nodes will have the same batch with the same sequence number in their log. When
all preceding sequence numbers are filled in the log, a request is SMR-DELIVERED to clients.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:14 G. Zhang et al.

Clients consider their requests delivered when they obtain a quorum of response messages from
nodes.

3.4.3 Multiple Leader Selection. For each epoch, ISS selects multiple leaders using a leader se-
lection (LE) policy. The LE policy can be customized so long as it guarantees liveness: each bucket
will be assigned to a segment with a correct leader infinitely many times in an infinite execution.
The ISS implementation in the article uses BFTMencius [65] to keep sufficient correct nodes in the
leader set (i.e., the set of all leader nodes). Operating under BFT, BFTMencius uses multiple paral-
lel leaders with its Abortable Timely Announced Broadcast communication primitive to achieve
consensus in a bounded delay after GST.

To detect leader failure, each SB instance uses a failure detector that identifies quiet nodes (which
may be crashed nodes, or non-crash faults that are identical to crash faults), as introduced by
Malkhi and Reiter [63]. The failure detector guarantees that all correct nodes will eventually sus-
pect a quiet node and that a correct node will not be suspected by other correct nodes after a
predetermined amount of time. When a faulty node is detected, ISS removes the node from the
leader set and assigns a new leader to the affected SB instance using the leader selection policy.

3.4.4 Pros and Cons. ISS’s greatest contribution is its ability to run multiple consensus in-
stances in parallel, which significantly increases throughput compared to single-leader consen-
sus protocols. ISS also provides faster client responses by allowing client requests to be executed
once they are sent, independent of the current epoch being complete. Furthermore, ISS ensures
that resources are not wasted processing duplicate requests by sorting each request into only one
bucket.

While ISS achieves higher throughput, it introduces additional overhead in consensus latency.
For example, client requests must be sent to and hashed at all nodes to ensure they are placed in
the appropriate bucket queue. Another drawback is that the multi-leader approach can result in a
higher probability that an SB instance will fail when a node becomes faulty. For any leader failure,
a new leader must be selected and re-propose uncommitted requests. This can negatively impact
overall throughput if the distribution of requests to leader nodes is unbalanced, such that certain
node failures cause higher setbacks for the system.

3.5 DAG-Rider: All You Need is DAG

Directed acyclic graph (DAG). DAG-based BFT algorithms introduce a novel approach by employ-
ing parallel transaction pipelining and constructing DAGs on each node. These graphs encapsulate
the complete history of message propagation, encompassing both the traversal path and the causal
relationships between messages.

One significant advantage of DAG-based BFT systems is their ability to operate without relying
on designated leader servers for the transaction distribution process. In traditional leader-based al-
gorithms (e.g., SBFT [43] and HotStuff [98]), designated leader servers shoulder the responsibility
of transaction dissemination and achieving consensus on those transactions. However, this ap-
proach can exert an immense workload on the leader servers, leading to transaction backlogs and
system bottlenecks. In contrast, transactions in DAG-based BFT algorithms are pipelined in par-
allel using the DAG data structure; this is possible as DAG-based algorithms can facilitate a clear
separation between the transaction distribution and consensus phase. This results in a substantial
increase in throughput, making them a more scalable and efficient BFT consensus solution.

In addition, DAG-based algorithms present a unique fusion of leader-based and leaderless ap-
proaches. In the message dissemination phase, no leader is involved, whereas, in the consensus
phase, a leader is needed for each consensus instance. Instead of queuing messages and being
blocked by previous consensus results, nodes can now disseminate and pipeline messages in a

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:15

Fig. 6. An example of a DAG that contains eight rounds and two waves, where vertices a and b are the leader

vertices of waves w − 1 and w , respectively. In this DAG, Vertex b has a weak edge connecting it to Node 3,

and other links are strong edges that directly connect vertices in adjacent rounds. Since Vertex a does not

have sufficient strong edges connecting to it, it is not committed in Wave w − 1. In contrast, since Vertex b
has sufficient strong edges, the transactions stored in both a and b will be committed in Wave w , as a has a

path linking to b.

non-blocking manner, independent of the ongoing consensus process. The actual consensus for
committing the pipelined messages operates as a separate process.

As a result, DAG-based BFT algorithms often demonstrate a clear throughput advantage
compared to their counterparts, such as PBFT [22] and HotStuff [98]. Although DAG BFTs
suffer from high latency as the final consensus result must wait for the transition pipelining,
their throughput advantage makes them a promising choice for scalable and throughput-critical
blockchain solutions.

3.5.1 System Model and Service Properties. DAG-Rider [50] is an asynchronous Byzantine

Atomic Broadcast (BAB) protocol that achieves post-quantum safety with optimal time and mes-
sage complexity. DAG-rider is comprised of two layers: a round-based structured DAG for reliable
message dissemination, and a zero-overhead consensus protocol that allows nodes to indepen-
dently determine a total order of messages to commit without extra communication overhead.

DAG-Rider uses the Bracha broadcast (see Section 5.1) and tolerates f faulty nodes with at least
3f + 1 total nodes. It ensures liveness by assuming a global perfect coin that allows calling nodes
to independently choose a “leader” node (vertex) at an instance of waves (a similar concept to
consensus instances) such that all correct nodes choose the same leader.

3.5.2 The DAG Pipelining. Each node independently maintains its own DAG, where the DAG
represents the node’s interpretation of the message dissemination topology among all nodes. The
progression of the DAG occurs in rounds, with each round r building upon the previous one, start-
ing with the formation of the DAG in round r and then adding nodes in round r + 1. Each node
manages an array denoted by [], which stores the DAGs’ pertinent information, including the
number of vertices (v) and the associated round number (r). Each vertex within the DAG contains
crucial details, such as the message’s originator, identified as the “source”, the round number, and
a block of transactions.

Figure 6 provides a visual representation of an eight-round DAG on a node. In each round, a
vertex is connected to those that disseminate the same message. For instance, in Round r − 6, the
vertex on Node 0 is linked to all nodes in Round r − 7 because they have all disseminated and
stored value a.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:16 G. Zhang et al.

In addition, DAG-Ridger defines two sets of edges: strong and weak edges. In a round r , strong
edges reference the vertices that are directly linked in the previous round (i.e., Round r − 1), and
weak edges reference vertices that are not directly linked in the previous round. In Figure 6, all the
solid arrows are strong edges as they reference connected adjacent vertices. However, the dashed
arrow extending from Node 2 in Round r − 3 (storing Value b) forms a weak edge, linking it to
Node 3 in Round r −5, reflecting the absence of a direct connection as the DAG progresses through
rounds.

When clients propose transactions, nodes actively receive vertices, store them in a buffer, and
consistently monitor the status of these vertices. The nodes perform periodic checks to ascertain
whether the vertices within the buffer have successfully received all their required predecessor
vertices (either strong or weak edges). Once the necessary predecessors are included, nodes pro-
ceed to integrate the vertices into the DAG array, organizing them based on their respective round
numbers. Each attribute of the array can be considered a distinct set that encompasses vertices
originating from the corresponding round index.

Upon successfully inserting 2f +1 vertices from the current round (Round r), a node progresses
to the subsequent round (Round r +1). In this new round, the node generates a new vertex denoted
asv , which encompasses the essential vertex information: the updated round number, strong edges
that connect it to vertices in Round r , weak edges extending toward vertices that do not possess
any path connecting them to v , and the accompanying block of transactions. This vertex is then
broadcast to all other replicas within the network.

In the process of constructing DAGs, nodes may, at times, perceive different DAGs due to the
protocol’s operation within partially synchronous networks. Nevertheless, as each node adheres to
the BAB protocol (as detailed in Section 3.5.1) for vertex dissemination, the DAGs will eventually
converge and become identical among non-faulty nodes. DAG-Rider [50] provides rigorous proofs
that every vertex broadcast by a correct process is eventually included in the DAG of all other
correct processes.

3.5.3 Consensus in DAGs. DAG-Rider leverages the previously mentioned perfect coin mech-
anism, enabling nodes to independently inspect the DAG and deduce which blocks to deliver, as
well as their specific order, without necessitating additional coordination among replicas. Follow-
ing the delivery of vertices in the DAGs across nodes, the system initiates consensus operations
aimed at deterministically finalizing the commit of the disseminated transactions.

In this process, DAGs are divided into waves, with each wave spanning four consecutive rounds.
During each wave, nodes utilize the perfect coin to select a random leader vertex in the first round.
The next step is to deliver all blocks of vertices that either have paths from the leader vertex or are
part of the causal history of the leader, adhering to a pre-defined deterministic order. To be chosen
as a leader for a wave, a vertex must have a crucial property: it must have 2f + 1 strong edges
leading to it in the next round. This requirement guarantees that all nodes in the network commit
to the same leader every wave.

Figure 6 is divided into two distinct waves. In the first wave w − 1, Vertex a serves as the leader
vertex. However, in this scenario, the blocks contained in Vertex a cannot be finalized for com-
mitment due to the insufficient presence of strong edges (i.e., fewer than 2f + 1 strong edges). In
contrast, in the subsequent wave w , Vertex b is elected as the leader vertex. Since Vertex b has
sufficient strong edges among the nodes, its blocks will be committed by the end of this wave. No-
tably, since Vertex a is a part of the causal history of Vertex b (i.e., there exists a path connecting
Vertex a to Vertex b), Vertex a is also committed alongside Vertex b.

3.5.4 Pros and Cons. The DAG structure employed by DAG-Rider serves a dual purpose of dis-
seminating messages and facilitating voting for agreement. Using the underlying reliable broadcast

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:17

protocol prevents guarantees that all correct processes eventually have a consistent view of the
DAG. The round-based DAG allows for a more stable commit as the expected value of commit is
every one and a half waves.

Compared to leader-based BFT algorithms, DAG-based approaches enable transactions pipelin-
ing in parallel. While they obtain high throughput, the latency experiences a significant surge be-
cause of the separation between the transaction distribution and consensus. DAGs have a message
complexity ofO (n3 log(n) +nM) including the reliable broadcast and a minimum time complexity
of O (5) for a strong path.

3.6 Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus

Narwhal [29] uses a DAG-based Mempool to separate transaction dissemination from transaction
ordering to achieve high-performance consensus. It offloads reliable transaction dissemination
to the Mempool protocol and only relies on consensus to sequence a small amount of metadata,
increasing performance significantly. It also introduces Tusk, a BFT consensus protocol that works
with Narwhal to achieve high performance even in the presence of faults or asynchrony.

3.6.1 System Model and Service Properties. Narwhal’s failure assumption is the same as DAG-
Rider (see Section 3.5), which tolerates up to f failures withn = 3f +1 nodes in total. The Mempool
works as a key-value store where the value is a block b of transactions and the key is its digest d .
It provides the unique following service properties.

— Integrity. It ensures that reading a d also returns the same b on honest parties.
— Block-Availability. It ensures that reading a d after a successful write of KV-pair (d,b) on a

correct party must eventually return b.
— Containment. It ensures that the causal history of a later block always contains that of the

earlier block.
— 2/3-Causality. It ensures that the causal history of a block contains at least 2/3 of the previous

blocks.
— 1/2-Chain Quality. It ensures that at least 1/2 of a causal history is written by honest

parties.

3.6.2 The DAG Replication Protocol. Narwhal uses a similar method as DAG-Rider for block
propagation and creating DAGs; however, it presents a novel implementation of reliable broad-
cast as opposed to using the expensive Bracha’s broadcast protocol. It leverages the inherent DAG
structure and introduces certificate of availability. The DAG in Narwhal is composed of blocks,
each comprising a hash signature, a list of transactions, and a collection of certificates of availabil-
ity for the previous round’s block. The certificate is a data structure containing the hash of its
corresponding block, along with 2f + 1 signatures from other validators and the round number r ,
acknowledging the successful delivery of the block.

The protocol roughly works as follows:

(1) Validators continually accept client transactions and store them in a transaction list. Addi-
tionally, they receive certificates and store them in a separate certificate list.

(2) At round r − 1, if a validator receives 2f + 1 certificates from other validators for the current
round, it advances to a new round r . Subsequently, it creates a new block containing the
current transactions from the transaction list and broadcasts this block to other validators.

(3) Upon receiving a block, a validator first validates the block’s signature, ensuring it contains a
2f +1 certificate from the previous round r−1. Additionally, the validator ensures that it is the
only block from the source validator. If these conditions are met, the validator acknowledges
the block by signing the hash with its own signature.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:18 G. Zhang et al.

(4) Once a validator receives 2f + 1 acknowledge signatures for a specific block it had broad-
casted, it creates a certificate of availability for the given block and broadcasts this certificate.
The validator then stops broadcasting the original block.

After the dissemination of transactions in the DAG Mempool, Tusk takes charge of managing
the consensus process. Tusk chooses a random leader block using the same interpretation in DAG-
Rider. Nevertheless, unlike DAG-Rider, Narwhal and Tusk reduce the number of waves used for
consensus. They only take a wave of 3 rounds, and the first and third rounds of two consecutive
waves can overlap to allow for a total time complexity of the consensus process of 4.5 rounds.

3.6.3 Pros and Cons. Narwhal and Tusk provide a practical implementation as a DAG-based
BFT protocol. Similar to DAG-Rider, Narwhal shows a throughput advantage in empirical exper-
iments compared to traditional BFT algorithms, such as PBFT [22] and HotStuff [98]. However,
since no order is maintained in the Mempool, Narwhal suffers from a much higher time com-
plexity as transactions that have not met the criteria for a delivery wait for more waves. Thus,
transaction consensus often has a high latency because of the waiting time for multiple rounds
before the system commits a block.

4 TOWARD MORE ROBUST BFT CONSENSUS

While efficient BFT algorithms achieve high performance under normal operation, they may have
sacrificed robustness and become vulnerable under a diverse attack vector. This section introduces
robust BFT algorithms that mark fault tolerance as the first priority, fortifying system robustness
by defending diverse attacks under Byzantine failures. The surveyed algorithms are exemplary ap-
proaches in defending against performance attacks (e.g., Aardvark [25] in Section 4.1), biased client
handling attacks (e.g., Pompe [102] in Section 4.2), monopoly attacks (e.g., Spin [94] in Section 4.3),
and repeated misbehavior attacks (e.g., Prosecutor [99] in Section 4.4). This section also includes
RBFT [4] (in Section 4.5), which introduces more redundancy than standard BFT approaches to
tolerate corner cases.

4.1 Aardvark: Making Byzantine Fault-Tolerant Systems Tolerate Byzantine Failures

Aardvark [24] aims at improving the robustness of BFT algorithms that achieve high performance
in terms of throughput and latency when the system operates in gracious executions, such as
PBFT [22], Zyzzyva [52], 700BFT [42], and Scrooge [83]. In gracious executions, the network
is synchronous, and all clients and servers are correct. However, the efficient BFT protocols
are vulnerable during uncivil executions, in which the network latency is bounded and up to f
servers may become Byzantine faulty with unlimited Byzantine clients. In this case, a series of
meticulously designed attacks can wreck the performance of these BFT algorithms, and the system
availability decreases significantly (even down to zero). For example, when clients use an incon-
sistent authenticator on requests, PBFT [22] fails to make progress and can result in repeated view
changes.

4.1.1 System Model and Service Properties. Aardvark uses the same fault-tolerance and network
synchrony assumption as PBFT: it tolerates f fault replicas out of a total of 3f +1 replicas; it ensures
safety in asynchrony but requires bounded message delay to obtain liveness. Aardvark argues that
the first principle to design BFT algorithms should be the ability to tolerate Byzantine failures and
defend against malicious attacks; during uncivil executions, the performance degradation should
remain at a reasonable degree. Aiming to improve BFT robustness, Aardvark’s improvements are
threefold: stronger message authentication (signed client requests), independent communication
(resource isolation), and adaptive leadership rotation (regular view changes).

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:19

Fig. 7. The messaging pattern with robustness improvements under normal operation in Aardvark.

4.1.2 Robustness in Log Replication. Aardvark requires clients to use digital signatures to
authenticate their requests. Unlike the message format of PBFT in Table 2, a client request is
specifically authenticated between the requesting client (denoted by c) and the receiving replica
(denoted by r). It has the format of 〈〈reqest,op, timestamp, clientId〉σc

, clientId〉μc,r , where the
operation and timestamp are signed by signature σc ; the signed message is then authenticated
by a message authentication code (MAC) μc,r for recipient r . In addition, Aardvark requires
communication among replicas to use separate network interface controllers (NICs) and wires
(shown in Figure 7). This separation enables a more secure communication channel, reducing
interference from faulty servers. Replicas also separate message queues for receiving requests
from external clients and internal replicas. The isolation of message queues prevents replicas
from being overwhelmed by a spike of client requests.

The workflow of the replication protocol of Aardvark is similar to that of PBFT. However, with
signed client requests and resource isolation, Aardvark takes more steps to verify both client and
replica messages, aiming to reduce the potential impairment from faulty clients and replicas. To
verify a client message, a replica, in the request phase, checks that 1© the client is not blacklisted;
2© the authentication MAC (μc,r) is valid; 3© the timestamp is incremented by one as the previously
received one; and 4© the request has not been processed. Then, 5© the replica verifies signature σc ;
if σc is invalid, the replica blacklists this client. Finally, if the request is verified in a previous view
but not processed, 6© the replica continues the replication protocol, which allows the system to
commit cross-view requests.

Messages circulated between two replicas also undergo a checklist process. In particular, when
replica i receives a message from replica j, replica i 1© takes a volume check: if replica j sends more
messages than expected, replica i blacklists replica j. Then, replica i 2© picks received messages
to process consensus in a round-robin manner and discards incoming messages if buffers are full.
Next, replica i 3© verifies the message’s MAC, 4© processes the message according to its type,
and 5© adds it to the corresponding quorum. After a complete quorum (with a size of 2f + 1) is
formed, the consensus process continues. If replica i is not processing any messages for forming
consensus (i.e., in the idle mode), replica i 6© starts to process catchup messages from other
servers in the recovery mode.

4.1.3 Robustness in View Changes. In PBFT, a primary is considered correct if consensus can
be achieved in time; i.e., backups commit a proposed request before their timers expire. This
primary may stay in this position forever and dominate the replication phase. This scenario
may result in low performance if the primary deliberately slows the process of leading the
consensus or colludes with faulty clients. Although Aardvark utilizes the same view-change
protocol as PBFT [22] (shown in Figure 2(b)), to prevent any replica from dictating the replication
process, Aardvark imposes two expectations on a correct primary: 1© sufficiently and timely
issuing Pre-prepare messages and 2© maintaining sustained throughput. If the primary fails

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:20 G. Zhang et al.

either of the two expectations, Aardvark imposes view changes regardless of the primary’s
correctness.

The former expectation requires the primary to timely and fairly process client requests. Aard-
vark manages Pre-prepare messages as heartbeats between the primary and backups. A backup
starts a timer in a view, say view v , and resets it upon receiving a valid Pre-prepare message
from the primary; otherwise, the timer keeps counting down. Thus, if the primary cannot issue
Pre-prepare messages in time, the backup’s timer expires; the backup considers the primary to be
faulty and invokes a view change to enter viewv+1. In addition, backups require fairness of client
request ordering. A backup monitors a client request if the request has not been pre-prepared and
relays it to the primary. If the primary cannot issue Pre-prepare for this request after another two
requests are pre-prepared, the backup considers the primary to be faulty as the primary’s behav-
ior is unfair, with a probability of trying to block requests from specific clients. Then, the backup
initiates a view change to enter the next view.

The latter expectation is enforced by monitoring the primary’s throughput over n previous
views. Aardvark uses periodic checkpoint messages to calculate a primary’s averaged through-
put. The primary of viewv is expected to maintain at least 90% of the throughput achieved in its n
prior views. If the primary fails to accomplish this goal, backups consider the primary to be faulty
and initiate a new view change to enter view v + 1.

4.1.4 Pros and Cons. Aardvark addresses the robustness problem of PBFT-like consensus algo-
rithms, especially focusing on tolerating faulty clients. The improvements made by Aardvark are
generally focused on requiring signed client messages, isolating resources, and performing regular
view changes; thus, compared with its baseline protocols, Aardvark obtains a lower throughput
deduction during uncivil executions than during gracious executions.

On the other hand, the strict expectations on a correct primary to maintain at least 90% of the
throughput achieved in the last n views may bring an unnecessary burden on correct replicas and
benefit a faulty primary [4]. When the workload increases, a faulty primary can block incoming
client requests and select only 90% of them to process. This behavior may result in more severe
performance degradation when the workload is dynamic. Additionally, since correct primaries can
be mistakenly replaced with the system making no progress, Aardvark may impose unnecessary
view changes, thereby impeding higher throughput performance.

4.2 Pompe: Byzantine Ordered Consensus Without Byzantine Oligarchy

Pompē [102] is an ordering protocol built on top of standard consensus algorithms (e.g., SBFT [43]
and HotStuff [98]). It prevents Byzantine replicas from dictating the order of commands by demo-
cratically collecting preferred orders from a quorum of replicas. After an order of a command
is decided, Pompē relies on an applied consensus algorithm to perform consensus for a batch of
ordered commands in a periodic manner.

4.2.1 System Model and Service Properties. Pompē tolerates f faulty replicas out of a total
of 3f + 1 replicas. It has a unique service property that can address the ordering of opera-
tions/commands since the ordering of operations can have significant financial implications [28].
In addition to the traditional specification of BFT SMR correctness (i.e., safety and liveness), Pompē
introduces a new property: Byzantine ordered consensus. This property assigns each operation with
an ordering indicator, which shows a replica’s preference to order the operation. By coordinating
indicators, Pompē avoids the ordering manipulation of operations against Byzantine replicas (i.e.,
Byzantine oligarchy) that disrespect the ordering indicators from correct replicas. For example, al-
though it can ensure safety and liveness, a Byzantine primary can always deliberately put requests
from client ci before requests from client c j when their requests invoke the same operation.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:21

Fig. 8. The message-passing workflow of determining an order that avoids primary manipulation in Pompe.

4.2.2 The Replication Protocol. Pompē has two phases in the replication protocol: 1© the order-

ing phase and 2© consensus phase. The ordering phase secures a democratic order of a proposed
request. Unlike traditional BFT algorithms, in which the order is single-handedly decided by the
primary, in Pompē, the order is a selection among 2f + 1 preferred orders from different repli-
cas. Specifically, as shown in Figure 8, the ordering phase has two steps: the propose order and
lock order steps. In the first step, a replica (say replica i), acting as a proposer, broadcasts a Re-
qestTS message in the format of 〈ReqestTS, c〉σi

to solicit preferred timestamps, which are
used as the ordering indicator, for command c from all other replicas. Then, a replica (say replica
j) replies to the proposer with 〈ResponseTS, c, ts〉σj

, where ts is its preferred timestamp. After the
first step, the proposer collects ResponseTS messages to a set T until a quorum is formed. Then,
the second step starts; the proposer picks the median timestamp, denoted by tsm , from T , and
assigns tsm as the order of the command. Next, the proposer broadcasts the order in the format of
〈Seqence, tsm , c,T 〉σi

. Finally, replica j verifies and accepts the received order if the received or-
der should be higher than any previously accepted orders. If the received order is accepted, replica
j replies to the proposer with an acknowledgment in the format of 〈SeqenceResponce,ack,h〉σj

;
otherwise, it replies 〈SeqenceResponce,nack,h〉σj

, where h is the cryptographic hash of the re-
ceived Seqence message from the proposer. At the end of the ordering phase, Pompē obtains an
order for a specific command such that the order is not manipulated by Byzantine oligarchy. Since
there are at most f Byzantine replicas, in a quorum with a size of 2f + 1, the median is the both
upper- and lower-bounded timestamps from correct replicas.

Pompē relies on an applied consensus algorithm to obtain consensus for ordered commands. For
example, if Pompē uses HotStuff [98] as its consensus algorithm, it periodically executes consensus
in a predefined interval. During an interval, Pompē packs ordered commands into a batch, and
the consensus phase is used to periodically commit a batch of commands. With the ordering and
consensus phases, Pompē achieves Byzantine ordered consensus, which adds ordering fairness to
linearizability.

4.2.3 The View-Change Protocol. Pompē does not have a new design for view changes. When a
primary fails, both the ordering and consensus phases cannot proceed. Pompē relies on its applied
consensus algorithm to detect primary failures and then initiate a view change.

4.2.4 Pros and Cons. Pompē extends the traditional correctness discussion of BFT SMR from
focusing only on safety and liveness to the ordering of operations. This new property may have
a significant impact when the BFT SMR service is used in financial applications [28]. In Pompē,
the ordering of operations is democratically decided by a quorum of replicas instead of being
determined by a single primary. Pompē separates consensus into two major phases as ordering
and consensus and majorly discusses the ordering phase.

Yet, Pompē does not design a specific consensus algorithm but uses any standard consensus
algorithm to perform the second phase. However, since many consensus algorithms have

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:22 G. Zhang et al.

Fig. 9. The message-passing workflow of normal operation and merge operation in Spin.

meticulously designed view-change protocols, it is unclear how safety and/or liveness can be
ensured when these consensus algorithms are applied to perform the ordering service. For
example, PBFT’s design allows valid cross-view requests to be committed; if PBFT applies to
Pompē as a consensus algorithm, it may disable this feature because of potential safety violations.

4.3 Spin: Byzantine Fault Tolerance With a Spinning Primary

Spinning [94] addresses the problem of performance degradation in leader-based BFT algorithms
under faulty leaders. PBFT [22] and its variants [11, 24, 52] use a stable primary to achieve con-
sensus, and backups detect primary failures using timeouts. The primary remains unchanged as
long as no failures are reported by backups. The timeout value is often set much larger than the
expected completion time of a consensus instance (e.g., a timeout is set to 500 ms when consensus
can be achieved within 50 ms). However, this stable leadership design is vulnerable to performance

attacks where a faulty primary deliberately slows down transaction processing in a delay that does
not trigger a backup timeout. To mitigate this problem, Spinning rotates primaries for each client
request, which avoids leadership monopoly from specific replicas. Since faulty primaries can cause
sustained performance degradation, it also uses a blacklist to prevent f suspected faulty replicas
from becoming a primary.

4.3.1 System Model and Service Properties. Spinning assumes a partially synchronous network
for maintaining liveness while safety does not require network synchrony. Similar to the fault-
tolerant model in PBFT [22], Spinning tolerates f failures in a total of 3f + 1 replicas. In addition,
standard public/private key encryption is used on messages.

4.3.2 Robustness in Log Replication. Spinning’s normal operation for a consensus instance fol-
lows PBFT’s communication pattern that includes pre-prepare, prepare, and commit phases,
with 2f + 1 commit messages needed for operation execution (shown in Figure 9(a)). Compared
with PBFT, which changes a primary when it is suspected of being faulty, Spinning changes a
primary whenever it defines the order of a batch of requests. For example, in Figure 9(a), when a
client broadcasts a request (r1), replica R0, the primary of view v , starts a consensus instance for
committing r1; when the client proposes another request (r2), the consensus is conducted by the
primary (R1) of the next view, v + 1. Since requests are handled in different views, Spinning does
not need to assign sequence numbers to requests but uses the view number instead. After a client
broadcasts a request, if a replica receives a pre-prepare message from the primary in view v ′ > v
for current view v , it buffers the message until view v ′ becomes valid; v is set when the replica
receives at least f + 1 prepare messages from distinct replicas with v as the current view number.
If a replica cannot receive enough prepare messages, it uses the last accepted view number vlast .
When the client receives f + 1 replies from distinct replicas, it accepts the result in the reply.

Replicas use timeouts to limit the completion time of a consensus instance. If a replica cannot
collect enough commit messages in time, it triggers a timeout and sends a merge message to all

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:23

replicas. Unlike PBFT, the merge operation is not designed to change views; it aims to determine
which requests from the previous view can be accepted and executed by merging information from
all replicas and proceeding to a new view (shown in Figure 9(b)). The merge operation first begins
when replicas trigger a timeout or have received f + 1 merge messages from distinct replicas. A
merge message contains a set, P , that contains requests that a replica has received a pre-prepare
message paired with 2f + 1 prepare messages. That is, set P shows requests that have been pre-
pared and can proceed with their commit operation in the next view. Next, after receiving 2f + 1
merge messages, the replica of the new view enters the pre-prepare merge phase (R3 in Figure 9(b)).
It broadcasts a pre-prepare-merge message that contains a vector of digests of requests received
from valid P sets. Finally, replicas change their state back to normal after a received pre-prepare-
merge message is verified, and normal operation resumes.

4.3.3 Robustness in View Changes. Since leadership is rotated for each request, Spinning does
not require an explicit view change protocol when a primary failure is detected. However, under
f faulty replicas in a total of n = 3f + 1 replicas, frequent leadership rotation can significantly de-
crease throughput, as no request can be committed under a faulty primary, with a drop in through-

put of 33% in theory (
f

3f +1). To mitigate this effect, Spinning uses a blacklist to exclude misbehaved

replicas when assigning the primary role. The list has a maximum capacity of f , where the oldest
are removed if full, and is maintained by all correct replicas using pre-prepare-merge messages.
When a faulty primary triggers a merge operation, the failure is confirmed when a pre-prepare-
merge message is sent in a view; replicas then put this faulty primary into the blacklist. Since
a replica can be wrongly judged faulty because of network conditions, when the blacklist size
exceeds f , the oldest replica is removed in a FIFO manner. Replicas on the blacklist can still par-
ticipate in consensus processes; they are excluded from the primary role only when leadership is
rotated for handling new incoming client requests.

4.3.4 Pros and Cons. Equipped with the leadership-rotation-per-request mechanism, compared
with efficient BFT algorithms (in Section 3), Spinning becomes more robust under malicious attacks
targeting the primary replicas. Since it amortizes the coordination workload among all replicas, it
also mitigates the performance bottleneck problem in algorithms that use only a single primary.

Nevertheless, leadership rotation incurs extra message-passing when failures do not occur on
a primary. The merge operation has a message complexity of O (n2) and is triggered on every
failed replica. This extra messaging cost has a negative impact on system performance whenever
a replica fails in the system.

4.4 Prosecutor: Behavior-Aware Penalization Against Byzantine Attacks

4.4.1 System Model and Service Properties. Prosecutor [99] assumes a partially synchronous
network and tolerates f Byzantine failures out of a total of 3f + 1 replicas. Compared with PBFT-
like algorithms, Prosecutor has a different perspective on view changes: it allows server replicas
to actively claim to be the new primary and transition to an intermediate state called candidate, as
opposed to rotating leadership on a predefined schedule. To suppress Byzantine servers from being
the primary, Prosecutor imposes computation penalties on candidates; the computation difficulty
changes based on the candidate’s past behavior. The more failures a candidate has exhibited, the
greater computation penalty the candidate must incur for becoming the new primary.

4.4.2 The Replication Protocol. Prosecutor efficiently replicates client requests, with a message
complexity of O (n). Similar to HotStuff’s replication protocol, Prosecutor utilizes threshold signa-
tures to reduce the package size in primary-backup communication. Specifically, the replication
process has five phases. First, the client broadcasts requests to all replicas. Then, the primary

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:24 G. Zhang et al.

Fig. 10. The replication and view-change protocols in Prosecutor.

assigns an order to the request and sends it to all other replicas. Next, replicas verify the primary’s
message to ensure that the order has not been used for other requests. Then, replicas partially
sign an endorsement and reply to the leader, indicating that they agree to commit the request
in the assigned order. After collecting 2f + 1 replies from different replicas, the leader considers
the request to be committed and issues a commit instruction signed by its threshold signatures.
Finally, replicas examine the commit instruction and announce to the client that the request has
been locally committed.

4.4.3 The View-Change Protocol. Prosecutor’s view-change protocol, associated with compu-
tation penalties, is the most unique feature compared with those of other state-of-the-art BFT
algorithms. Generally, a view-change process has two major steps: performing computations and
voting (shown in Figure 10(b)). Specifically, if a backup’s timer expires, the backup invokes an al-
gorithm, similar to Proof-of-Work [68], to perform hash computations. 1© The backup prepares a
proof window that contains an array of values starting at the first uncommitted value and end-
ing at the last committed value. Then, the backup combines its proof window with a randomly
generated string called nonce. 2© The backup computes the hash of the combination to obtain a
hash result. Prosecutor imposes a threshold requirement for the result. The threshold is an integer
that indicates the number of identical and consecutive bytes a hash result should prefix. 3© If the
hash result satisfies the threshold requirement, the algorithm terminates; otherwise, the backup
repeatedly changes the nonce until obtaining a qualified result. After a qualified result is acquired,
4© the backup becomes a candidate, broadcasts a VoteMe message including the new view num-
ber and hash result, starts a new timer, votes for itself, and waits for votes from the other replicas.
If the candidate collects 2f votes before its timer expires, 5© it becomes the primary in the new
view and broadcasts a New-View message including the collected votes, showing the legitimacy
of leadership.

Replicas increment the threshold value of a requesting candidate after receiving its VoteMe mes-
sage. Thus, the more requests a candidate has initiated, the more computation the candidate must
perform for the next leadership competition. Moreover, replicas decrement a candidate’s threshold
if the candidate becomes the primary and successfully conducts k consensus in a new view, where
k is a predefined parameter of the minimum number of expected transactions committed under
correct leadership. Therefore, if a replica does not fulfill the primary duty after being elected, its
threshold will not be decreased; this penalization regime entices replicas to operate correctly in
order to avoid performing computation work.

4.4.4 Pros and Cons. Prosecutor penalizes suspected faulty replicas while achieving efficient
consensus in terms of linear message complexity. If Byzantine servers launch attacks aiming to
usurp correct leadership, they will be penalized and forced to perform exponentially growing
computational work. Thus, Byzantine servers are gradually suppressed and marginalized from
leadership competition. Compared with PBFT-like view change protocols, such as PBFT [22] and

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:25

Fig. 11. The message-passing workflow of normal operation in RBFT. Replicas run a PBFT consensus instance

in parallel after the propagate phase.

HotStuff [98], Prosecutor can avoid sustained performance degradation when faulty servers re-
peatedly launch attacks.

However, the PoW-like penalization may become less efficient if faulty servers have a strong
computation capability; in this case, Prosecutor may suffer from a long period without a cor-
rect leader before Byzantine servers exhaust their computation capability. In contrast, Pres-
tigeBFT [101] established a vigorous reputation mechanism that quantifies the level of suspicion
of misbehaved servers. PrestigeBFT penalizes faulty servers and rewards correct servers in a more
granular and efficient way.

4.5 RBFT: Redundant Byzantine Fault Tolerance

4.5.1 System Model and Service Properties. RBFT [4] suggests that some methods aiming to im-
prove the robustness of fault tolerance, such as Prime, Aardvark, and Spin, leave the door open
for performance degradation in numerous corner cases. These corner cases often target a primary,
which may result in single points of failure, thereby reducing system performance. To tackle this
challenge, RBFT introduces more redundancy in the consensus process: RBFT executes multiple
instances of the PBFT protocol in parallel, and each replica plays the primary role in the corre-
sponding instance. Among these parallelly executing instances, one instance assumes a master
role and takes the primary duty to lead the consensus, whereas other instances assume a backup
role to monitor the processing speed of the master, preventing the master from deliberately slow-
ing down the consensus process. Similar to PBFT’s failure assumption, RBFT tolerates f faulty
replicas out of a total of 3f + 1 replicas.

4.5.2 Robustness in Replication. The replication process has four major phases, the first of
which is the request phase. In this phase, a client broadcasts a request to all replicas. In contrast
to PBFT, RBFT requires clients to broadcast their requests to all replicas, even if the master
replica is correct and responsive. After checking the signature of the request, replicas broadcast
the request to all other replicas in the propagate phase. Since only f out of 3f + 1 replicas are
faulty, a correct replica is able to eventually receive at least f + 1 propagate messages. Then, the
replica starts its local instance of a PBFT consensus, which contains the pre-prepare, prepare, and
commit subphases. Similar to the end of PBFT’s commit phase, if 2f + 1 commit messages are
collected from different replicas in the same instance, the replica in RBFT commits the request.
Finally, the replica executes the request and sends a reply to the requesting client in the reply
phase.

The redundancy of multiple concurrently running instances is used to monitor the master
instance’s processing speed to detect whether the master is faulty. Each instance sends periodic
messages to inquire about the number of requests the other servers have processed and then

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:26 G. Zhang et al.

calculates the average processing speed. If the master’s processing speed falls below the average
by a threshold (say ti), the instance considers the master instance to be faulty and initiates instance
changes (similar to view changes). Additionally, each instance tracks the processing time of each
request’s consensus and calculates the average latency for each client. If the processing time for
some clients deviates from the average by a threshold (say tc), the master instance is considered un-
fair in leading the consensus. Consequently, backup instances initiate instance changes to enter the
next view.

4.5.3 Robustness in Instance Changes. The instance-change protocol operates in a similar way
as the view-change protocol in PBFT to replace a faulty primary. Each instance maintains a counter
c; if the master instance does not satisfy the two thresholds (i.e., ti and tc), a backup instance incre-
ments c and broadcasts an instance-change message in the format of 〈instance-change, c, i〉σi

,
in which i is the instance ID. After receiving this message, other instances check the currently
monitored performance of the master instance if the received c is not less than their own counters.
If the performance does not satisfy the two threshold criteria, these instances support the instance
change and broadcast their instance-change messages. Upon receiving 2f +1 instance-change
messages with the same counter from different instances, a new master instance is selected, and
the system enters the next view.

4.5.4 Pros and Cons. RBFT observes that some previously published robust BFT algorithms,
such as Prime, Aardvark, and Spin, have flaws in corner cases. These cases often target the primary
and can result in dramatic throughput degradation. RBFT solves this problem by using multiple
concurrently running instances to monitor the performance of the primary (master instance).

Nevertheless, RBFT introduces more operating costs owing to more redundancy; this imposes
a massive additional messaging cost on the system compared with PBFT-like algorithms, the mes-
sage complexity of which (in the order of O (n2)) hinders them from being used in large-scale
practical applications. Since each replica runs a PBFT-like instance after the propagate phase, to
commit |M | requests, the message complexity of RBFT is O (|M |(n + n2 + n(n + n2 + n2) + n)) =
O (2|M |(n3+n2+n)). In addition, RBFT may still suffer from unnecessary view changes that mistak-
enly replace a correct master instance. In practice, especially in geo-distributed applications, the
communication latency between clients and different replicas can be significantly different; when
the difference causes a correct master to fail to meet the fairness requirement, backups replace the
master by initiating unnecessary instance changes.

5 TOWARD MORE AVAILABLE BFT CONSENSUS

In addition to the efficient and robust BFT algorithms, there has been significant research focusing
on addressing the availability problem in BFT consensus. Specifically, researchers have developed
asynchronous BFT protocols that are capable of operating in scenarios with varying levels of syn-
chrony. Many leader-based algorithms are susceptible to single points of failure, particularly when
targeting the primary server. In such cases, the system must first detect a primary failure and then
invoke a view-change protocol to select a new primary. Moreover, primary servers that handle
interactions with both clients and other servers often experience heavy workloads, potentially
becoming bottlenecks for the entire system.

This section delves into the approaches that offer increased availability, allowing BFT consensus
to function with limited synchrony. These more available BFT algorithms predominantly fall
into the category of leaderless algorithms. We first introduce the basic components in Section 5.1
and DBFT [26] in Section 5.2, Honeybadger [64] in Section 5.3, and the BEAT family [36] in
Section 5.4.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:27

Fig. 12. The messaging pattern of Bracha’s RBC where n = 4 and f = 1.

Fig. 13. The messaging pattern of the binary Byzantine agreement protocol where n = 4 and f = 1.

5.1 Preliminary Fundamental Models

Before delving into each algorithm, we introduce two fundamental building blocks that facilitate
the design and implementation of leaderless BFT algorithms: the reliable broadcast (i.e., Bracha’s
RBC), introduced by Bracha et al. [12], and the binary Byzantine agreement (i.e., BA), introduced
by Moustefaoui et al. [66].

5.1.1 Reliable broadcast. This protocol achieves agreement in asynchronous networks [12]. It
contains four major steps (shown in Figure 12(a)).

(1) First, the primary (replica R2) proposes a value v by broadcasting an initial message.
(2) When a replica (including the primary) receives the initial message, it broadcasts an echo

message with v .
(3) A replica broadcasts a ready message with v if it receives n − f echo messages with the

same v , or it receives f + 1 ready messages with the same v .
(4) Finally, when a replica receives n − f ready messages with the same v , it delivers v .

In step 3, for a valuev , a replica broadcasts the ready message only once. For example, in 12(b),
after receiving three echo messages, replica R1 broadcasts a ready message; it does not broadcast
twice at the ready phase. In contrast, R3 fails to collect n − f echo messages, so it must broadcast
a ready message when it receives f + 1 ready from the other replicas.

Bracha’s RBC terminates at the end of its last phase. This guarantees that if the proposer p is
correct, then all correct processes deliver p’s proposed value, or if p is faulty, then either all correct
processes deliver the same value or none of them deliver p’s proposed value.

5.1.2 Binary Byzantine Agreement. Similar to the network assumption of Bracha’s RBC, the
binary Byzantine agreement protocol [66] operates in asynchronous networks despite failures.
The protocol operates through a progression of rounds and terminates until a consensus is
reached. Each round has three coordination phases aiming to deliver a value under the presence
of Byzantine failures (shown in Figure 13(a)).

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:28 G. Zhang et al.

In Phase 1, each replica first increments its round number r by one and then performs a two-step
broadcast, denoted by BV-broadcast. Each replica first proposes an estimated value (est), 0 or 1, and
broadcasts the value with r . Then, when a replica receives the same value as the current round
number r from f + 1 replicas and this value has not yet been broadcast, the replica re-broadcasts
the value (gray arrows in 13(a)). In this case, if a replica receives 2f + 1 messages with the same
value v , BV-broadcast considers this value to be delivered, and the replica stores this value to an
array V (i.e., bin_values in the original article), where V may contain multiple values.

In Phase 2, to commit values in V , a replica broadcasts an aux message with V if its V is not
empty. In addition, replicas can asynchronously execute this phase as long as V is not empty, so
an aux message can be broadcast before V collects its final value.

In Phase 3, when a replica receives n − f aux messages, if (1) every message contains a single
valuev and (2)v ∈ V (i.e.,v was delivered by BV-broadcast in Phase 1), the replica starts a coin-flip
process to decide the final delivery of v by the following three steps:

(1) It uses a random number generator to obtain a coin-flip value c ∈ 0, 1.
(2) If v = c , it delivers v and sets est = v as an initial estimated value for the next round.
(3) If v � c , it sets the initial estimated value as the coin value; i.e., est = c for the next round.

Phase 3 does not involve message exchanges among replicas. Each replica decides the delivery
(or abort) of the initial value of the current round and assigns the initial value for the next
round.

Figure 13(b) shows an example of replicas proposing conflicting values. In this case, replicas
R1 and R2 propose value 0 (shown in solid lines), whereas R3 and R4 propose value 1 (in dashed
lines). After Phase 1, each replica receives three messages containing value 0 and three messages
containing value 1 after the two steps of message passing. For instance, R1 receives two messages
with v = 1 (it receives two dashed lines and thus re-broadcasts v = 1) and another message with
v = 0 in the first step (one solid line). As a result, every replica has two values, 0 and 1, in itsV by
the end of phase 1. After Phase 2, all aux messages of each replica contain two values; therefore,
no replica can decide. They must flip their coins to calculate the est values for a new round, so
multiple rounds may be needed to reach a final agreement.

The BA protocol obtains validity and agreement; that is, a decided value is proposed by a correct
replica (validity), and no two correct processes decide different values (agreement). Since each
correct replica decides at most once, with randomized replicas reaching a common coin, BA obtains
termination: with the growing number of round r (i.e., r → +∞), the probability of each correct
replica deciding by round r is 1.

5.2 DBFT: Efficient Leaderless Byzantine Consensus and its application to blockchains

5.2.1 System Model and Service Properties. Democratic Byzantine fault tolerance (DBFT) is
a leaderless BFT protocol that tolerates f Byzantine replicas among at least 3f +1 replicas [26, 27].
DBFT runs on a partially synchronous network, and its messaging pattern combines RBC and a
derived version of BA, namely Psync, which uses a weak coordinator to improve performance. DBFT
has a time complexity of 6 (rounds) in the best case, given no faulty replicas and a synchronous
network, and a message complexity of O (n3).

5.2.2 The Binary Byzantine Consensus, Psync. Psync is adapted from the BA protocol shown in
Section 5.1.2. Psync made three major changes to the original protocol:

(1) Psync adds timeout triggers in each phase to handle partial synchronous networks.
(2) Psync adds a weak coordinator in Phase 2 to resolve conflicts.
(3) Psync adds a termination condition in Phase 3.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:29

Fig. 14. The message-passing workflow of Psync in DBFT where n = 4 and f = 1.

Fig. 15. The complete protocol of DBFT.

As shown in Figure 14(a), Psync divides Phase 2 of the BA protocol into two steps. A weak co-

ordinator i is picked in a round-robin fashion such that i = ((r + 1) mod n) + 1, where r is the
round number and n is the number of all replicas. In this example, replica R2 is the weak coordi-
nator, and it broadcasts a coord message to the other replicas. When the weak coordinator has
multiple values in its value set V , it picks the value v received from the smallest ID replica and
then broadcasts a coord message with v . As a result, Psync can resolve value conflicts to a great
extent. Next, the weak coordinator and the other replicas that have received the coord message
within a time delay threshold broadcast an aux message containing v . At the end of this phase,
replicas wait for n − f aux messages to start Phase 3.

Since Psync works in partial synchrony, if a non-weak-coordinator replica does not receive any
coord message in time, it still broadcasts the aux messages. Figure 14(b) shows an example where
replicas R1 and R2 propose value 0 (solid lines), while R3 and R4 propose value 1 (dash lines). At
the end of Phase 1, each replica receives three messages containing value 0 and three messages
containing value 1 in two rounds. In this case, both values, 0 and 1, are included in each replica’s
value set V . The weak coordinator R2 decides to propose value 0 because 0 is received from R1,
which has the smallest ID number. However, the coord messages sent from R2 have not reached
R3 and R4 in time. These two replicas must broadcast their aux messages containing both values
0 and 1. In Phase 3, no replica collects sufficient aux messages (n − f = 4 − 1 = 3) with a single
value v . Consequently, no replica can deliver any value, and they must start the next round to
resolve this conflict.

In Phase 3, if a replica has decided a value in round r , it checks whether the current value set
V has more than one value; i.e., some other replica has not yet decided. If so, the replica starts the
next round. Each replica halts after two rounds of its decision round; i.e., if a replica has decided
in round r , it terminates the current Psync instance in round r + 2.

5.2.3 DBFT Protocol Based on Psync. Figure 15 shows the complete DBFT protocol, divided
into two parts. The first part consists of Bracha’s RBC [12] instances. Each instance corresponds
to a proposed value. After this instance finishes, each replica checks the validity of the proposed
data, denoted by D, (e.g., the values proposed by all replicas). The second part consists of n Psync

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:30 G. Zhang et al.

instances (i.e., each replica contributes a Psync instance). This part assists all replicas in deciding
whether to accept D. DBFT claims that these Psync instances can execute on different threads in
parallel. For simplicity, we put those instances in sequential order in Figure 15. Each replica can
operate those instances in two ways:

(1) Fast path. If a replica (say j) has RBC-delivered some data Di from replica i , it joins Psynci ,
sets its Psync value set V = 1 in Psynci , and directly starts its role in Phase 2 by skipping
the double broadcast procedure in Phase 1. The fast path’s functionality and correctness of
Phase 1 in Psync are performed and ensured by the RBC protocol (Section 5.1.1). Replica j
keeps joining such RBC-delivered Psync instances until one of the Psync instances delivers
a single value 1.

(2) Regluar Path. If a replica delivers value 1 in a Psync instance, it joins all other Psync instances.
It proposes value 0 and starts its role from Phase 1. In addition, if a replica never delivers
any data through RBC, it joins each Psync instance and starts from Phase 1 with a proposed
value 0.

After running n Psync instances, when an instance (say Psynci) delivers 1, each replica picks the
smallest ID i . Then, the data D on replica i are the decided data by this DBFT consensus instance.

The message complexity of each RBC or Psync instance is O (n2). Since multiple RBCs and n
Psync instances are needed, the total message complexity becomesO (n3). In the best case, data can
be delivered with one RBC instance plus n Psync instances starting from a fast path and running
in parallel. In this case, the time complexity is 4 rounds (RBC) plus 2 rounds (n parallel Psync with
fast path), which adds up to 6 rounds. If conflicts exist, DBFT needs at least one complete round
of Psync, which incurs a delay of at least 4 extra rounds.

5.2.4 Pros and Cons. DBFT improves the BA protocol by assigning a conflict resolver (i.e., the
week coordinator). Compared with BA, Psync can directly decide a binary value in the fast path
by removing the last two rounds and the random coin-flip procedure. This improvement upgrades
system performance in terms of throughput and latency, though it still requiresO (f) delays when
there are f Byzantine replicas [102]. However, DBFT assumes a partially synchronous network to
achieve consensus while some state-of-the-art leaderless protocols, such as HoenyBadgerBFT [64]
and BEAT [36], are able to work in asynchronous networks.

5.3 HoneyBadgerBFT: The Honey Badger of BFT Protocols

5.3.1 System Model and Service Properties. HoneyBadgerBFT is a leaderless BFT consensus pro-
tocol that tolerates f Byzantine replicas in a total of 3f + 1 replicas [64]. Compared to DBFT [27],
which operates in partially synchronous networks, it can operate in asynchronous networks. It
argues that failure detection based on timeouts requires network synchrony and tuning timeouts
is difficult in practice because the system may encounter arbitrary periods of asynchrony [64]. It
uses threshold encryption in its protocol to defend against censorship attacks, where adversaries
may refuse to broadcast or vote on certain data to prevent them from being processed. It has a time
complexity of O (logn) for n replicas and a message complexity of O (|M |n + |c |n3 logn), where M
is the message set.

5.3.2 Efficient Reliable Broadcast for Large Messages. HoneyBadgerBFT uses batching to
improve the system’s throughput. When multiple RBC instances run in parallel, large messages
may overload the network bandwidth and cause significant performance degradation. To reduce
messaging, HoneyBadgerBFT uses erasure coding in Bracha’s RBC protocol and thus reduces
the communication complexity from O (|B |n2) to O (|B |n), where |B | is the message size of a data
batch. Similar to Bracha’s RBC, this protocol has four steps (shown in Figure 16).

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:31

Fig. 16. The reliable broadcast for large messages in HoneyBadgerBFT, with n = 4 and f = 1.

In Step 1, the sender uses (n − 2f ,n) Reed-Solomon codes from [97] and disseminates a data

batch B into n blocks of size |B |
n−2f

. Each block contains original transactions and parity data

for decoding and recovery. The storage overhead is |B |
n−2f

÷ |B |
n
= n

n−2f
=

3f +1
3f +1−2f

=
3f +1
f +1 < 3,

where |B |
n

is the ideal block size without any parity data. The erasure coding scheme brings two
benefits:

(1) It reduces the size of initial and echo messages by a factor of O (n), which further reduces

the communication complexity from O (|B |n2) (in Bracha’s RBC) to O (|B |
n
· n2) = O (|B |n).

(2) It requires n − 2f > f blocks to decode a complete batch. Thus, f faulty replicas cannot
produce enough blocks to pollute a correct replica’s decoded data.

After encoding, the sender adds the Merkle tree information as a checksum ci of each encoded
data block bi and then distributes each 〈initial,bi,ci 〉 to corresponding replica i .

In Step 2, similar to Bracha’s RBC, a replica broadcasts 〈echo,bi,ci 〉 after receiving the initial
message. Each replica also checks the validity of the data block in each echo message with its
Merkle-tree-based checksum and discards any faulty ones.

In Step 3, similar to Bracha’s RBC, a replica broadcasts a ready message only once if one of the
following conditions holds: 1© it receives no less than n − f echo messages, or 2© it receives f + 1
ready messages with valid h. The replica then recalculates the Merkle root h from the checksums
in the messages. Once the Merkle rooth is valid, it broadcasts a 〈ready,h〉message with the Merkle
root h to save bandwidth.

In Step 4, when a replica receives n − f ready messages with valid h, it waits for n − 2f distinct
echo messages to collect sufficient data blocks to decode B; afterward, it delivers B.

5.3.3 Binary Byzantine Agreement with Cryptographic Common Coin. HoneyBadgerBFT also
adapts the BA protocol [66] (introduced in Section 5.1.2) with two modifications: (1) a more secure
coin-flip process in Phase 3, and (2) an additional termination condition in Phase 3 to prevent BA
from prolonged looping.

The former process uses an (n, f) threshold signature from Cachin et al. [18] to generate a
common coin shared among n = 3f +1 replicas that tolerate up to f adversaries. This process first
assigns a trusted dealer to generate a common public key (pK) for all replicas and n secret keys
(sKi for replica i). Each replica computes a signature share for an input message m by using their
secret keys and then broadcasts the computed share. When f +1 shares from different replicas are
collected, a replica combines these shares and produces a threshold signature, siдm , that can be
verified by the common public key, pK ; siдm is valid if at least f + 1 shares are correct. Then, the
replica delivers m as the output of this process. Note that siдm cannot be verified by pK if some
shares are faulty [85]. Thus, the messaging is safe with up to f adversaries because polluting a
delivered value requires at least f + 1 faulty shares.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:32 G. Zhang et al.

Fig. 17. The complete protocol of HoneyBadgerBFT, with n = 4 and f = 1.

The latter modification aims to strengthen the termination of producing a common coin.
HoneyBadgerBFT uses a round number (r) in the BA protocol as an input message (i.e., m = r)
of the threshold signature process. Specifically, when a replica delivers a valid signature siдm

(where m = r), it computes a coin bit such that c = (siдm mod 2). Then, the replica checks
if its agreement value set V contains a value v such that v = c . If so, it delivers the agree-
ment set V . This process requires a message complexity of O (n2) incurred by the broadcast of
signature shares and a time complexity of O (1) (rounds). The replica terminates the loop for
obtaining a common coin (in Section 5.1.2) when a new coin (c ′) is obtained in a round such that
c ′ = v .

5.3.4 Asynchronous Common Subset. HoneyBadgerBFT uses an asynchronous common

subset (ACS) protocol from Ben-Or et al. [10] as the core building block. An ACS instance
contains up to n modified RBC instances (introduced in Section 5.3.2) and up to n modified BA in-
stances (introduced in Section 5.3.3) running in parallel. Each replica runs an ACS instance in two
phases.

In Phase 1, a replica i starts its RBCi instance when it proposes some data Di . All replicas par-
ticipate in this instance if some RBC from other servers starts as a proposer or a receiver.

In Phase 2, a replica joins up to n BA instances to decide whether to accept some replica(s)’
proposal(s). Here, if a replica delivered some data D j from RBCj (proposed by replica j), it sets 1
as the input value for BAj . All replicas then wait for at least n − f BA instances to deliver 1. After
that, a replica sets 0 to the BA instances for which it has not yet set any value and waits for all
BA instances to complete. HoneyBadgerBFT expects those instances to terminate after O (logn)
rounds [64]; i.e., the time complexity isO (logn). Under HoneyBadgerBFT, some RBC instance may
run more slowly than its paired BA instances. Thus, at the end of Phase 2, each replica waits for a
paired RBC and BA = 1 to deliver their data D to itself. Finally, each replica delivers a collection
of the data blocks as a final decision.

The time complexity of an ACS instance is O (logn) as it must wait for each BA to finish [10].
There are solutions with a time complexity of O (1) [9], but HoneyBadgerBFT decides to use the
current solution to achieve high throughput.

5.3.5 The Complete Protocol of HoneyBadgerBFT. The complete HoneyBadgerBFT runs in three
epochs (shown in 17) that coordinate the pace of all replicas to achieve consensus. We now show
the lifetime of a transaction going through the three epochs.

In the first epoch, a replica i randomly selects a batch of transactionsTi from its buffer and uses
a threshold encryption scheme from Baek and Zheng [6] to encrypt Ti into encrypted data Di .
This scheme works similarly to the threshold signature scheme described in Section 5.3.3, where
a trusted stakeholder generates a common public key and n individual private keys distributed
to each replica; each replica can encrypt data, produce a share, and decrypt the share with f + 1
decryption shares.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:33

In the second epoch, a replica i uses its encrypted data Di as the input of an ACS instance. After
running n RBC instances and BA instances, the replica acquires a collection of encrypted data
blocks {Dx |x ∈ {1...n} ∧ BAx = 1} delivered by this ACS instance.

In the third epoch, a replica decrypts each acquired Dx to obtain the original transaction setTx .
Specifically, each replica broadcasts its decryption share ofDx , denoted as Share (Dx , i), to the other
replicas. Then, if a replica collects decryption shares of a data blockDx from f +1 different replicas,
it retrieves the original data Tx . Once a replica retrieves the original Tx , it delivers transactions in
Tx and deletes them from its buffer.

5.3.6 Messaging Complexity and Batch Sizes. HoneyBadgerBFT utilizes many protocols to
achieve consensus without a primary, which makes it tricky to calculate its messaging complexity.
We analyze the messaging complexity of a consensus process that commits a set of M transactions
among n replicas.

(1) The RBC. Each replica selects a subbatch of B = M
n

transactions as the input of their
corresponding RBC instance. Note that each instance has a communication complexity of
O (|B |n) (previously analyzed in Section 5.3.2), and there are n RBC instances in total (shown
in Figure 17). Therefore, the messaging complexity is O (n · |B |n) = O (|M |n).

(2) The BA. An instance of BA requires O (n2) messages for each round, and each instance
requiresO (logn) rounds to guarantee termination. Assume the message size in this instance
is |c | (the relation of c and M is precisely discussed in the paragraph below), each instance
has a messaging complexity of O (|c |n2 logn), and there are n instances, which results in a
total messaging complexity of O (|c |n3 logn).

(3) The decryption share. Each replica i sends its decryption share Share (Dx , i) of data blocks
Dx to every other replica, and it may receive n blocks as a replica sends O (n2) decryption
share messages. Assuming the share size is |s |, a replica requires a messaging complexity of
O (|s |n2). With a total of n replicas, the messaging complexity becomes O (|s |n3).

By summing up the above three complexities, HoneyBadgerBFT has a messaging complexity of
O (|M |n + |c |n3 logn + |s |n3), though it claims that the decryption share size |s | is much smaller
than the original data block. Since O (|s |n3) � O (|c |n3 logn), O (|s |n3) becomes negligible. There-
fore, the messaging complexity is on the order of O (|M |n + |c |n3 logn). In addition, to eliminate
the additional overhead O (|c |n3 logn) of n replicas (i.e., O (|c |n2 logn) overhead on each replica),
HoneyBadgerBFT sets the global batch size M = Ω(|c |n2 logn) to achieve the best throughput
performance [64].

5.3.7 Pros and Cons. HoneyBadgerBFT is able to achieve high throughput over tens of
thousands of transactions per second among a hundred replicas. It claims to be the first practical
solution that guarantees liveness in asynchronous networks. It also provides several encryption
mechanisms to prevent censorship attacks.

However, HoneyBadgerBFT sacrifices latency to achieve high throughput, as shown in [36].
The latency is relatively high (> 10s) when n > 48 [64], which is undesirable for applications that
require low-latency consensus. The erasure coding library [97] of HoneyBadgerBFT also puts an
upper bound of n to 128 [36].

5.4 BEAT: Asynchronous BFT Made Practical

5.4.1 System Model and Service Properties. BEAT [36] consists of five leaderless asynchro-
nous BFT protocols (i.e., BEAT0 to BEAT4), each of which addresses different goals such as
throughput, latency, bandwidth usage, and BFT storage. These protocols draw inspiration from
HoneyBadgerBFT [64] and make improvements to achieve higher performance.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:34 G. Zhang et al.

Fig. 18. The reliable broadcast for large messages in BEAT3, with n = 4, f = 1, and m = f + 1 = 2.

5.4.2 BEAT0. BEAT0 makes three major improvements compared to HoneyBadgerBFT.

(1) It uses a labeled threshold encryption mechanism. All encrypted data blocks Di from a
replica Ri in an epoch e are labelled as (e, i); duplicated messages with the label (e, i) are
discarded. In addition, BEAT0 replaces HoneyBadgerBFT’s pairing-based cryptography with
TDH2 [86], which significantly reduces the encryption latency [36].

(2) It replaces HoneyBadgerBFT’s common coin protocol by directly applying a threshold
coin clipper method [18]; the new method can also reduce latency in obtaining a com-
mon coin.

(3) It uses a more efficient erasure coding library called Jerasure 2.0 [77]; the new erasure cod-
ing approach has higher performance than the zfec [97] library used in HoneyBadgerBFT
and is able to scale up the cluster size to more than 128 replicas.

5.4.3 BEAT1 and BEAT2. BEAT0 inherits the erasure-coding-based reliable broadcast protocol
used in HoneyBadgerBFT; however, this protocol incurs high latency when batch sizes are small.
To improve their performance, BEAT1 and BEAT2 use the original Bracha’s RBC [12] to obtain
lower broadcast latency, and BEAT2 also moves the labeled threshold encryption from server ends
to client ends. By doing so, faulty replicas cannot defer transaction processing to perform censor-
ship attacks; however, they can target and suppress specific clients to censor client requests. To mit-
igate this problem, BEAT2 uses anonymous communication networks to hide clients’ information
so that correct clients are not exposed to adversaries. This improvement assists BEAT2 in achieving
casual order preservation [17, 35, 79], a weaker consistency guarantee than linearizability [48].

5.4.4 BEAT3. BEAT3 uses an erasure-code-based RBC protocol called AVID-FP [47] to replace
Bracha’s RBC used in BEAT2. AVID-FP follows a four-phase message-passing workflow (shown
in Figure 18), similar to the RBC protocols introduced in Sections 5.1.1 and 5.3.2:

(1) A replica uses a (n,m) labeled threshold encryption to encode a data batch (B) to a set of
fragments ({Fi }) and a single global fingerprinted cross-checksum (c). It then broadcasts ini-
tial messages in the form of 〈initial, Fi,c〉 to corresponding replicas Ri where i ∈ {1..n}.
(BEAT3 sets n =m + 2f wherem ≥ f + 1 matches the threshold).

(2) Each replica Ri verifies the received fragment Fi using cross-checksum c . If Fi is valid, Ri

stores Fi with c and then broadcasts an echo message piggybacking c .
(3) A replica broadcasts a ready message with c (only once) when 1© it has receivedm+ f echo

messages with c , or 2© it has received f + 1 ready messages with c .
(4) After a replica receives 2f +1 ready messages with the same cross-checksum c , it delivers c .

Although Bracha’s RBC, HoneyBadgerBFT’s RBC, and AVID-FP have a similar message-passing
workflow, the messaging formats are different: Bracha’s RBC carries original data blocks in all
messages until the protocol terminates, which involves a large message size, whereas HoneyBad-

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:35

gerBFT’s RBC carries fragmented data blocks by the end of the second phase. In contrast, AVID-FP
broadcasts fragmented data blocks only in the first phase; the rest of the phases circulate only
the global cross-checksum value. Since checksums are usually much smaller than data blocks,
AVID-FP is able to reduce the usage of network bandwidth to O (|B |) + O (n |c |) = O (|B |) where
O (|B |) for the first phase and O (n |c |) for the remaining phases.

Fig. 19. MDS vs. pyramid codes.

The AVID-FP protocol does not guarantee that all correct repli-
cas eventually receive the original data. Since the threshold of
encryption is f +1, AVID-FP guarantees that f +1 correct replicas
eventually receive f +1 erasure-encoded fragments of the original
data, with one fragment on each replica, and all correct replicas
deliver the global fingerprinted cross-checksum c . Nonetheless,
clients can reconstruct the original data from f + 1 fragments and
verify data integrity using the cross-checksum c . Since a client
encodes a data block B and generates fragments with a checksum,
the client can send a query quest to collect f + 1 fragments paired with c from f + 1 correct
replicas. Then, the client can decode the received fragments to reconstruct the original block B.

By using AVID-FP, BEAT3 significantly reduces the storage usage, from O (n |M |) to O (|M |)
where M is the set of all messages. The evaluation results of BEAT [36] show that BEAT3 outper-
forms HoneyBadgerBFT under all performance metrics: throughput, latency, scalability, network
bandwidth, and storage overhead.

5.4.5 BEAT4. This protocol replaces AVID-FP used in BEAT3 with AVID-FP-Pyramid, which
uses pyramid codes [49] to reduce data reconstruction costs for read operations. Compared with
MDS [62], the conventional erasure code, pyramid codes require additional parity data but allow
partial data reconstruction with less information; i.e., clients can recover specific data from tailored
data fragments. This method enables a more efficient data recovery process with a lower bandwidth
when clients need only partial data fragments. For example, in smart contract applications, clients
often need only specific keywords to append or execute transactions; in video media services,
clients may load partial fragments instead of the whole video.

Figure 19 shows an example of the pyramid code used in BEAT4 compared to conventional
MDS codes where there are 6 data fragments. In this example, a (9, 6) MDS code [62] builds three
redundant parity fragments (F7...F9), whereas a (9 + 1, 6) = (10, 6) pyramid code equally divides
data fragments and computes two group-level parity fragments, namely, F7−1 for {F1, F2, F3} and
F7−2 for {F4, F5, F6}, using a (4, 1) MDS code. Besides the two group-level parity fragments, the
(10, 6) pyramid code maintains two global-level parity fragments (F8 and F9). In this case, if a
fragment is faulty (say F1), the pyramid code needs only 3 group-level fragments (F2, F3, and F7−1)
to recover F1 instead of using 6 fragments in a (9, 6) MDS code.

By using AVID-FP-Pyramid, a client can directly request a specific data fragment from the corre-
sponding replica and the checksum from f +1 replicas. If the fragment is faulty, the client can first
try to collect group-level fragments from corresponding replicas and reconstruct the fragment. If
the client fails to collect sufficient group-level fragments, it then broadcasts a request to collect
global-level fragments from replicas outside the group. As a result, BEAT4 can save 50% of the
bandwidth in read requests, with approximately 10% additional storage space [36, 49]. However,
BEAT4 requires more replicas to store pyramid codes, which incurs a higher latency. For example,
in BEAT’s evaluation, the latency is higher than that of HoneyBadgerBFT when f = 1, but when
f > 1, BEAT4 outperforms HoneybadgerBFT under all performance metrics.

5.4.6 Discussion. We qualitatively compare BEATs and HoneyBadgerBFT in Table 3 in terms
of throughput, latency, consumption of network bandwidth, scalability, and storage space. BEAT0,

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

134:36 G. Zhang et al.

Table 3. Qualitative Comparison of BEAT and HoneybadgerBFT

Throughput Latency
Bandwidth Scalability Storage

b B b B

HoneybadgerBFT 1x 1x 1x 1x O (n |B |) Base O (n |M |)
BEAT0 1.1x 1.1x 0.3-0.5x ↓ O (n |B |) Better O (n |M |)
BEAT1 1-3x 0.7x 0.3-0.5x ↑↑ O (n2 |B |) - O (n |M |)
BEAT2 1.1x 0.7x 0.3-0.5x ↑↑ O (n2 |B |) - O (n |M |)
BEAT3 2x 2x 0.3-0.5x ↓↓ O (|B |) Best O (|M |)
BEAT4 2x 2x 0.7-1.1x ↓↓ O (|B |) - O (|M |) + 10%

Notations b and B represent low contention (small batch size) and high contention (large batch size (e.g., > 5000

transactions)), respectively; ↑ and ↓ represent slightly higher or lower values, and ↑↑ and ↓↓ represent significantly

higher or lower values than the baseline; ‘-’ means no data are presented in the article; and M is the set of all

transactions that clients send.

BEAT1, and BEAT2 can be applied to general SMR applications, while BEAT3 and BEAT4 are more
suitable for BFT storage services.

6 FUTURE RESEARCH DIRECTIONS

This article presents a comprehensive survey of advancements in BFT consensus, covering the
categories of more efficient, more robust, and more available approaches. The rise of BFT consensus
applications and their studies at the intersection with other interdisciplinary areas has revealed
new perspectives and challenges in the study of consensus algorithms. In this section, we identify
major gaps in existing solutions and propose promising directions for future research in the field of
BFT consensus algorithms, including scalability, ordering fairness, post-quantum safe consensus,
BFT in machine learning, and interoperability.

Scalability. Existing BFT algorithms perpetually navigate the delicate balance between achiev-
ing high throughput and low latency. These two facets remain ever-essential and will undoubtedly
remain at the forefront of ongoing research, especially in large-scale systems. While the introduc-
tion of linear protocols (e.g., HotStuff [98] and Prosecutor [99]) has improved scalability, it remains
a practical challenge in real-world systems. For example, blockchain applications implementing
BFT protocols are now expected to function across thousands of nodes, which require consen-
sus mechanisms to maintain high throughput and low latency. Addressing scalability concerns is
crucial to enable the wide adoption of BFT in increasingly large and complex networks.

Ordering fairness. Fairness in transaction handling plays a pivotal role in various applications,
with a profound impact on the financial sector [51]. Faulty leaders can unfairly handle client re-
quests and manipulate the processing of client requests [102]. For example, a compromised leader
can deliberately process transactions from its colluded clients to create front runners. These front
runners exploit their advanced knowledge, for instance, by buying or selling an asset just before
a large buy or sell order is executed, thereby capitalizing on the predictable price changes, which
is detrimental to the fairness and transparency of the system. Thus, upholding ordering fairness
will be the foundation of trust and impartiality in BFT applications.

Post-quantum safe BFT consensus. Current BFT consensus algorithms heavily rely on
cryptography to sign messages for efficiently forming Byzantine quorums, such as PBFT [22],
HotStuff [98], Prosecutor [99], and Narwhal [29]. However, with the burgeoning development of
quantum computing, traditional cryptographic methods (e.g., RSA and ECC) can be quickly solved
by quantum computers. In addition to investigating post-quantum cryptography (e.g, lattice-
based [75], code-based [70], and multivariate polynomial cryptography [31]), post-quantum safe

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

Reaching Consensus in the Byzantine Empire 134:37

BFT consensus algorithms can further reduce message passing to minimize the involvement of
cryptography in order to defend against quantum Byzantine attacks [15, 50].

Interoperability. Achieving interoperability among BFT-based blockchains is becoming
increasingly crucial as different blockchain networks and distributed systems emerge [46].
Researching ways to enable cross-chain consensus and interoperability will be valuable for the
broader blockchain ecosystem. Developing mechanisms that facilitate seamless data and asset
transfer requires consensus algorithms from both sides to coordinate agreements across platforms.
Promoting interoperability will enhance overall system flexibility and utility, encouraging collab-
oration between different blockchain projects and fostering a more interconnected ecosystem.

BFT consensus for machine learning. The rapid development in distributed training has
also introduced new challenges to BFT consensus. Machine learning models rely heavily on the
processing of extensive datasets. In distributed training (e.g., data parallelism), each node is respon-
sible for providing partial updates; any form of malicious or erroneous behavior during distributed
training has the potential to compromise the integrity of the data, ultimately leading to inaccura-
cies in model updates. Thus, efficient BFT consensus will become crucial in preserving data and
training integrity, underpinning the accuracy and reliability of machine learning models.

Moreover, multi-agent machine learning adds further layers of complexity to the training
process [73]. Multiple agents, each operating autonomously, coexist within a shared environ-
ment and make decisions in cooperative consensus [41]. Certain models employ consensus
mechanisms where agents collectively cast their votes to determine a final decision [60]. Thus, a
high-performance and robust BFT algorithm can be used to defend against malicious agents and
behavior, increasing the reliability and robustness of multi-agent machine learning models.

These challenges are the very problems that practical BFT applications are currently facing.
They represent the industry’s need to build more scalable, robust, and operable BFT applications
that can thrive in real-world scenarios. By addressing these critical issues, BFT research can con-
tribute significantly to the development and adoption of secure and efficient distributed systems
in both academia and industry.

7 CONCLUSIONS

This article surveyed selected state-of-the-art BFT consensus algorithms that are prominent exam-
ples from academia and industry. These algorithms are categorized as efficient, robust, and avail-
able BFT algorithms. We presented a qualitative comparison of all surveyed algorithms in terms
of time and message complexities. Each survey intuitively shows message-passing workflows for
reaching consensus by providing diagrams that depict the process of a complete consensus in-
stance. To improve understandability, each survey decouples the complex design and mechanism
of algorithms and describes their core components of consensus following the same structure,
including normal operation, view changes, robustness improvements, conflict resolutions, and a
discussion of strengths and weaknesses.

REFERENCES

[1] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2011. Prime: Byzantine replication under attack. IEEE Trans-

actions on Dependable and Secure Computing 8, 4 (2011), 564–577. DOI:https://doi.org/10.1109/TDSC.2010.70

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David

Enyeart, Christopher Ferris, Gennady Laventman, and Yacov Manevich. 2018. Hyperledger fabric: A distributed

operating system for permissioned blockchains. In Proceedings of the 13th EuroSys Conference. 1–15.

[3] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. John

Wiley and Sons.

[4] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. 2013. Rbft: Redundant byzantine fault tolerance. In

Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE, 297–306.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

https://doi.org/10.1109/TDSC.2010.70

134:38 G. Zhang et al.

[5] Leo Maxim Bach, Branko Mihaljevic, and Mario Zagar. 2018. Comparative analysis of blockchain consensus algo-

rithms. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Elec-

tronics and Microelectronics (MIPRO). IEEE, 1545–1550.

[6] Joonsang Baek and Yuliang Zheng. 2003. Simple and efficient threshold cryptosystem from the gap diffie-hellman

group. In Proceedings of the GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489).

IEEE, 1491–1495.

[7] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and George

Danezis. 2019. SoK: Consensus in the age of blockchains. In Proceedings of the 1st ACM Conference on Advances in

Financial Technologies. 183–198.

[8] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun Li, Dahlia Malkhi, Oded

Naor, Dmitri Perelman, and Alberto Sonnino. 2019. State machine replication in the libra blockchain. The Libra Assn.,

Tech. Rep (2019).

[9] Michael Ben-Or and Ran El-Yaniv. 2003. Resilient-optimal interactive consistency in constant time. Distributed Com-

puting 16, 4 (2003), 249–262.

[10] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure computations with optimal resilience. In

Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing. 183–192.

[11] Alysson Bessani, Joao Sousa, and Eduardo E. P. Alchieri. 2014. State machine replication for the masses with BFT-

SMART. In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

IEEE, 355–362.

[12] Gabriel Bracha. 1987. Asynchronous byzantine agreement protocols. Information and Computation 75, 2 (1987),

130–143.

[13] Eric A. Brewer. 2000. Towards robust distributed systems. In Proceedings of the PODC. Portland, OR, 343477–343502.

[14] Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. Ph.D. Dissertation.

[15] Maxime Buser, Rafael Dowsley, Muhammed Esgin, Clémentine Gritti, Shabnam Kasra Kermanshahi, Veronika

Kuchta, Jason Legrow, Joseph Liu, Raphaël Phan, and Amin Sakzad. 2023. A survey on exotic signatures for post-

quantum blockchain: Challenges and research directions. ACM Computing Surveys 55, 12 (2023), 1–32.

[16] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv:1710.09437. Retrieved from https:

//arxiv.org/abs/1710.09437. Accessed 2017.

[17] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure and efficient asynchronous broad-

cast protocols. In Proceedings of the Annual International Cryptology Conference. Springer, 524–541.

[18] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in constantinople: Practical asynchronous

byzantine agreement using cryptography. Journal of Cryptology 18, 3 (2005), 219–246.

[19] Christian Cachin and Marko Vukolić. 2017. Blockchain consensus protocols in the wild. In Proceedings of the 31st

International Symposium on Distributed Computing.

[20] Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Technical Report MIT/LCS/TR-817. MIT Laboratory for

Computer Science.

[21] Miguel Castro and Barbara Liskov. 2002. Practical byzantine fault tolerance and proactive recovery. ACM Transactions

on Computer Systems (TOCS) 20, 4 (2002), 398–461.

[22] Miguel Castro and Barbara Liskov. 1999. Practical byzantine fault tolerance. In Proceedings of the OSDI. 173–186.

[23] Yanling Chang, Eleftherios Iakovou, and Weidong Shi. 2020. Blockchain in global supply chains and cross border

trade: a critical synthesis of the state-of-the-art, challenges and opportunities. International Journal of Production

Research 58, 7 (2020), 2082–2099.

[24] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. 2009. Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX Symposium on Networked Systems Design

and Implementation (NSDI’09). USENIX Association, 153–168.

[25] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti. 2009. Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the NSDI. 153–168.

[26] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. 2017. DBFT: Efficient byzantine consensus with a

weak coordinator and its application to consortium blockchains. arXiv:1702.03068. Retrieved from https://arxiv.org/

abs/1702.03068. Accessed 2017.

[27] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. 2018. DBFT: Efficient leaderless Byzantine consensus

and its application to blockchains. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing

and Applications (NCA). IEEE, 1–8.

[28] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels.

2020. Flash boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In

Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1702.03068

Reaching Consensus in the Byzantine Empire 134:39

[29] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and tusk: A

dag-based mempool and efficient bft consensus. In Proceedings of the 17th European Conference on Computer Systems.

34–50.

[30] Diem. 2020. The Diem blockchain. Retrieved from https://developers.diem.com/main/docs/the-diem-blockchain-

paper

[31] Jintai Ding and Dieter Schmidt. 2005. Rainbow, a new multivariable polynomial signature scheme. In Proceedings of

the International Conference on Applied Cryptography and Network Security. Springer, 164–175.

[32] Tobias Distler. 2021. Byzantine fault-tolerant state-machine replication from a systems perspective. ACM Computing

Surveys 54, 1 (2021), 1–38.

[33] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the minimal synchronism needed for distributed

consensus. Journal of the ACM 34, 1 (1987), 77–97.

[34] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. 2017. Towards an optimized blockchain for IoT. In Proceedings of the 2017

IEEE/ACM 2nd International Conference on Internet-of-Things Design and Implementation (IoTDI). IEEE, 173–178.

[35] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2017. Secure causal atomic broadcast, revisited. In Proceedings of the

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 61–72.

[36] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT made practical. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security. 2028–2041.

[37] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial synchrony. Journal

of the ACM 35, 2 (1988), 288–323.

[38] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus with one

faulty process. Journal of the ACM 32, 2 (1985), 374–382.

[39] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone protocol: Analysis and applications.

In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques.

Springer, 281–310.

[40] David K. Gifford. 1979. Weighted voting for replicated data. In Proceedings of the 7th ACM Symposium on Operating

Systems Principles. 150–162.

[41] Rachid Guerraoui, Nirupam Gupta, and Rafael Pinot. 2023. Byzantine machine learning: A primer. ACM Computing

Surveys (2023).

[42] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010. The next 700 BFT protocols. In Pro-

ceedings of the 5th European Conference on Computer Systems. 363–376.

[43] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-Adrian

Seredinschi, Orr Tamir, and Alin Tomescu. 2019. SBFT: A scalable and decentralized trust infrastructure. In Proceed-

ings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,

568–580.

[44] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2021. Rcc: Resilient concurrent consensus for high-

throughput secure transaction processing. In Proceedings of the 2021 IEEE 37th International Conference on Data

Engineering (ICDE). IEEE, 1392–1403.

[45] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. [n.d.]. ResilientDB: Global scale resilient

blockchain fabric. Proceedings of the VLDB Endowment 13, 6 ([n. d.]).

[46] Panpan Han, Zheng Yan, Wenxiu Ding, Shufan Fei, and Zhiguo Wan. 2023. A survey on cross-chain technologies.

Distributed Ledger Technologies: Research and Practice 2, 2 (2023), 1–30.

[47] James Hendricks, Gregory R. Ganger, and Michael K. Reiter. 2007. Verifying distributed erasure-coded data. In Pro-

ceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing. 139–146.

[48] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems 12, 3 (1990), 463–492. DOI:https://doi.org/10.1145/78969.78972

[49] Cheng Huang, Minghua Chen, and Jin Li. 2013. Pyramid codes: Flexible schemes to trade space for access efficiency

in reliable data storage systems. ACM Transactions on Storage 9, 1 (2013), 1–28.

[50] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All you need is dag. In Proceed-

ings of the 2021 ACM Symposium on Principles of Distributed Computing. 165–175.

[51] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-fairness for byzantine consensus. In Pro-

ceedings of the Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO 2020.

Springer, 451–480.

[52] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2007. Zyzzyva: Speculative

byzantine fault tolerance. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles.

[53] Ramakrishna Kotla and Michael Dahlin. 2004. High throughput Byzantine fault tolerance. In Proceedings of the Inter-

national Conference on Dependable Systems and Networks, 2004. IEEE, 575–584.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

https://developers.diem.com/main/docs/the-diem-blockchain-paper
https://doi.org/10.1145/78969.78972

134:40 G. Zhang et al.

[54] Leslie Lamport. 1977. Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering

2 (1977), 125–143.

[55] Leslie Lamport. 1983. The weak Byzantine generals problem. Journal of the ACM 30, 3 (1983), 668–676.

[56] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998), 133–169.

[57] LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. 1982. The byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems 4, 3 (1982), 382–401.

[58] Leslie Lamport, Robert Shostak, and Marshall Pease. 2019. The byzantine generals problem. In Proceedings of the

Concurrency: the Works of Leslie Lamport. 203–226.

[59] Jinyuan Li and David Mazieres. 2007. Beyond one-third faulty replicas in byzantine fault tolerant systems.. In Pro-

ceedings of the NSDI.

[60] Michael L. Littman. 1994. Markov games as a framework for multi-agent reinforcement learning. In Proceedings of

the Machine Learning Proceedings 1994. Elsevier, 157–163.

[61] Nancy A. Lynch and Michael J. Fischer. 1981. On describing the behavior and implementation of distributed systems.

Theoretical Computer Science 13, 1 (1981), 17–43.

[62] Florence Jessie MacWilliams and Neil James Alexander Sloane. 1977. The Theory of Error Correcting Codes. Elsevier.

[63] Dahlia Malkhi and Michael Reiter. 1997. Unreliable intrusion detection in distributed computations. In Proceedings

of the 10th Computer Security Foundations Workshop. IEEE, 116–124.

[64] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The honey badger of BFT protocols. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 31–42.

[65] Zarko Milosevic, Martin Biely, and André Schiper. 2013. Bounded delay in byzantine-tolerant state machine replica-

tion. In Proceedings of the 2013 IEEE 32nd International Symposium on Reliable Distributed Systems. IEEE, 61–70.

[66] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-free asynchronous byzantine con-

sensus with t< n/3 and O (n2) messages. In Proceedings of the 2014 ACM Symposium on Principles of Distributed

Computing.

[67] Shashank Motepalli and Hans-Arno Jacobsen. 2022. Decentralizing permissioned blockchain with delay towers. arXiv

preprint arXiv:2203.09714.

[68] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review (2008), 21260.

[69] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm. In Proceedings of the

2014 USENIX Annual Technical Conference (USENIX ATC 14). 305–319.

[70] Raphael Overbeck and Nicolas Sendrier. 2009. Code-based cryptography. In Proceedings of the Post-Quantum Cryp-

tography. Springer, 95–145.

[71] Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs I. Acta Informatica 6,

4 (1976), 319–340.

[72] Susan Owicki and Leslie Lamport. 1982. Proving liveness properties of concurrent programs. ACM Transactions on

Programming Languages and Systems 4, 3 (1982), 455–495.

[73] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state-of-the-art. Autonomous Agents and

Multi-Agent Systems 11 (2005), 387–434.

[74] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement in the presence of faults. Journal of

the ACM 27, 2 (1980), 228–234.

[75] Chris Peikert. 2014. Lattice cryptography for the internet. In Proceedings of the International Workshop on Post-

Quantum Cryptography. Springer, 197–219.

[76] Gary L. Peterson and Michael J. Fischer. 1977. Economical solutions for the critical section problem in a distributed

system. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing. 91–97.

[77] Parth Deshmukh, Sean Maginnis, and Josh Chandler. 2011. Jerasure 2.0. Chancellor’s Honors Program Projects. https:

//trace.tennessee.edu/utk_chanhonoproj/1362

[78] Maciel M. Queiroz, Renato Telles, and Silvia H. Bonilla. 2020. Blockchain and supply chain management integration:

a systematic review of the literature. Supply Chain Management: An International Journal 25, 2 (2020), 241–254.

[79] Michael K. Reiter and Kenneth P. Birman. 1994. How to securely replicate services. ACM Transactions on Programming

Languages and Systems 16, 3 (1994), 986–1009.

[80] Robert W. Floyd. 1967. Assigning meanings to programs. In Program Verification: Fundamental Issues in Computer

Science. Springer, 65–81.

[81] Fred B Schneider. 1984. Byzantine generals in action: Implementing fail-stop processors. ACM Transactions on Com-

puter Systems 2, 2 (1984), 145–154.

[82] Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys 22, 4 (1990), 299–319.

[83] M. Serafini, P. Bokor, and N. Suri. 2008. Scrooge: Stable Speculative Byzantine Fault Tolerance Using Testifiers. Technical

Report. Darmstadt University of Technology, Department of Computer Science.

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

https://trace.tennessee.edu/utk_chanhonoproj/1362

Reaching Consensus in the Byzantine Empire 134:41

[84] Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel Castro, Cédric Fournet, Edward Ashton, Amaury Chamayou,

Sylvan Clebsch, Antoine Delignat-Lavaud, and Matthew Kerner. 2022. IA-CCF: Individual accountability for per-

missioned ledgers. In Proceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI’22). 467–491.

[85] Victor Shoup. 2000. Practical threshold signatures. In Proceedings of the International Conference on the Theory and

Applications of Cryptographic Techniques. Springer, 207–220.

[86] Victor Shoup and Rosario Gennaro. 1998. Securing threshold cryptosystems against chosen ciphertext attack. In

Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques. Springer,

1–16.

[87] Daniel P. Siewiorek and Priya Narasimhan. 2005. Fault-tolerant architectures for space and avionics applications.

NASA Ames Research http://ic.arc.nasa.gov/projects/ishem/Papers/Siewi

[88] Alexander Spiegelman, Balaji Aurn, Rati Gelashvili, and Zekun Li. 2023. Shoal: Improving DAG-BFT latency and

robustness. arXiv:2306.03058. Retrieved from https://arxiv.org/abs/2306.03058. Accessed 2023.

[89] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. 2022. Bullshark: Dag bft pro-

tocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security.

2705–2718.

[90] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko Vukolić. 2019. Mir-bft: High-throughput robust

bft for decentralized networks. arXiv:1906.05552. Retrieved from https://arxiv.org/abs/1906.05552. Accessed 2019.

[91] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. 2022. State machine replication scalability made

simple. In Proceedings of the 17th European Conference on Computer Systems. 17–33.

[92] Chrysoula Stathakopoulou, Signe Rüsch, Marcus Brandenburger, and Marko Vukolić. 2021. Adding fairness to order:

Preventing front-running attacks in bft protocols using tees. In Proceedings of the 2021 40th International Symposium

on Reliable Distributed Systems (SRDS). IEEE, 34–45.

[93] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. 2018. Performance benchmarking and optimizing hyper-

ledger fabric blockchain platform. In Proceedings of the 2018 IEEE 26th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 264–276.

[94] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. 2009. Spin one’s wheels?

byzantine fault tolerance with a spinning primary. In Proceedings of the 2009 28th IEEE International Symposium on

Reliable Distributed Systems. 135–144. DOI:https://doi.org/10.1109/SRDS.2009.36

[95] Chris Walter, Peter Ellis, and Brian La Valley. 2005. The reliable platform service: A property-based fault tolerant

service architecture. In Proceedings of the 9th IEEE International Symposium on High-Assurance Systems Engineering

(HASE’05). IEEE, 34–43.

[96] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N. Levitt, Po Mo Melliar-Smith, Robert E.

Shostak, and Charles B. Weinstock. 1978. SIFT: Design and analysis of a fault-tolerant computer for aircraft control.

Proceedings of the IEEE 66, 10 (1978), 1240–1255.

[97] Z. Wilcox-O’Hearn. [n.d.]. Zfec 1.5. 2. Open Source Code Distribution: https://pypi.python.org/pypi/zfec. Accessed

2023.

[98] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuff: BFT consensus

with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.

347–356.

[99] Gengrui Zhang and Hans-Arno Jacobsen. 2021. Prosecutor: An efficient BFT consensus algorithm with behavior-

aware penalization against Byzantine attacks. In Proceedings of the 22nd International Middleware Conference. 52–63.

[100] Gengrui Zhang and Hans-Arno Jacobsen. 2022. ESCAPE to precaution against leader failures. In Proceedings of the

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). IEEE, 625–635.

[101] Gengrui Zhang, Fei Pan, Sofia Tijanic, and Hans-Arno Jacobsen. 2024. PrestigeBFT: Revolutionizing view changes in

BFT consensus algorithms with reputation mechanisms. In Proceedings of the 2021 IEEE 40th International Conference

on Data Engineering (ICDE). IEEE.

[102] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020. Byzantine ordered consensus without

Byzantine oligarchy. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20). 633–649.

Received 18 August 2022; revised 16 October 2023; accepted 1 December 2023

ACM Computing Surveys, Vol. 56, No. 5, Article 134. Publication date: January 2024.

http://ic.arc.nasa.gov/projects/ishem/Papers/Siewi
https://arxiv.org/abs/2306.03058
https://arxiv.org/abs/1906.05552
https://doi.org/10.1109/SRDS.2009.36
https://pypi.python.org/pypi/zfec

